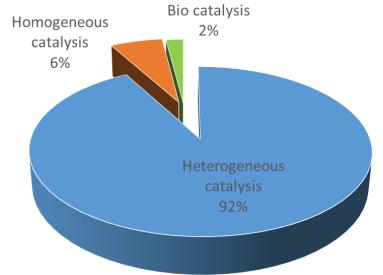

Studienschwerpunkt Katalyse

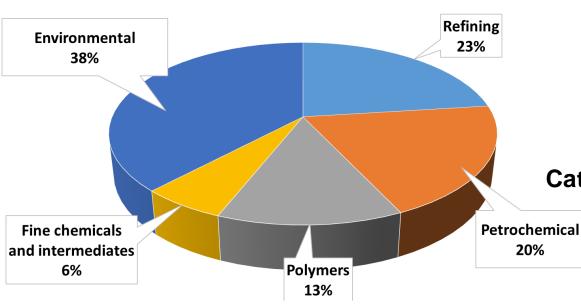
Catalysis has many manifestations

Energy input

Thermal catalysis

Photocatalysis


Electrocatalysis


Required energy input occurs via thermal, equilibrated energy transfer.

Part of the energy is transferred by photon absorption; photocatalysis and photo-electrocatalysis

Part of the energy is provided by electrons (external electric potential)

Role of catalysis in the chemical industry

The catalyst world market is about 10 billion US\$

- Equally distributed over refining, polymerization, chemicals and environmental applications
- The products of these processes were valued at 200–300 times that of the catalyst
- Catalysis enables to operate at the minimum temperature, the smallest reactor volume, and the lowest separation costs

Catalysis in the chemical industry

- Petroleum refining (~ 440 oil refineries all over the world)
- Natural gas processing (Hydrogen, small alkanes, ammonia)
- Petrochemicals (monomers, bulk chemicals)
- Fine chemicals (pharmaceuticals, agrochemicals, surfactants,..)
- Electrochemical processes (H₂ production, electrolysis, fuel cells)
- Environmental catalysis (exhaust gas treatment)

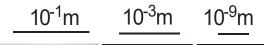
Catalysis in nature

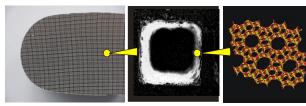
- Living matter relies on enzymes the most abundant catalysts
- Photosynthesis generates sugars and oxygen from carbon dioxide and water by using chlorophyll as catalyst probably the largest catalytic process in nature

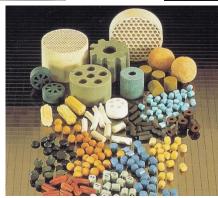
CRC Principal Investigators

www.munich-catalysis.tum.de

Aim of the courses


Unifying concepts of


- Homogenous catalysis
- Heterogenous catalysis
- Bio-/Enzyme catalysis
- Photo-/Electro catalysis


Strategies for synthesis, characterization, simulation of catalysts, catalytic reactions and reaction mechanisms

Concepts and realization of industrial processes

- Refining
- Petrochemistry
- Synthesis of fine chemicals
- Biochemistry
- Photo and electro catalytic processes
- ...

Zweiter Studienschwerpunkt Katalyse

- Fundamentals of Catalysis (WS 5 ECTS)
- Methods of Catalysis (SS 5 ECTS)
- Forschungspraktikum Grundlagen und Anwendung der Katalyse (SS 10 ECTS)

Elective modules

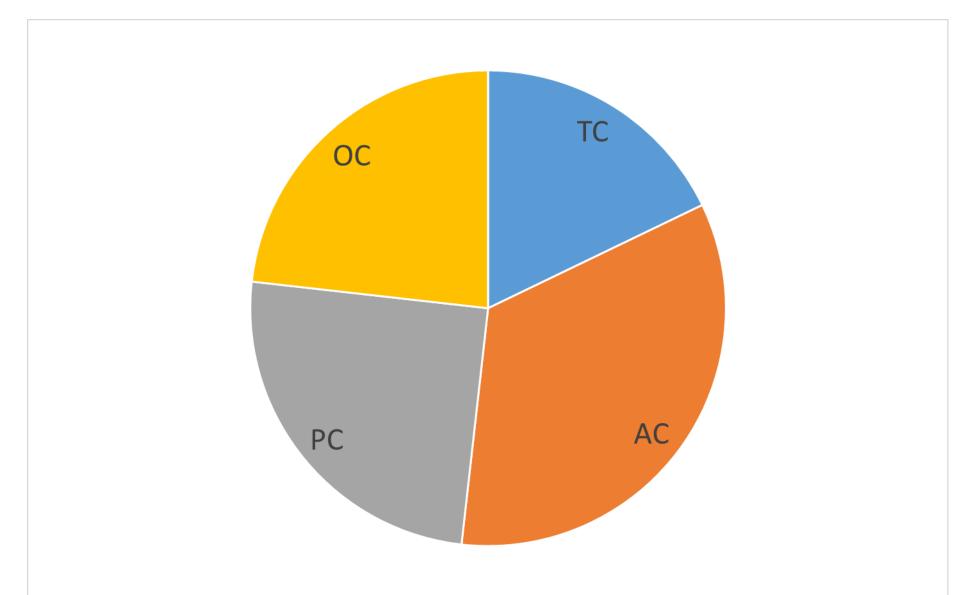
- Catalysis for Energy ICP1 (Strunk, WS)
- Catalysis in Industrial Practice (R. W. Fischer, WS)
- Design Principles for Homogeneous Catalysts (Cokoja, SS)

Additional elective modules (currently available)

- Catalysis for Synthesis ICP2 (Strunk, SS)
- Industrial relevant Activation of Small Molecules (R.W. Fischer, SS)
- High throughput methods (H. Stein SS)
- ...

2 Modules (5 ECTS: 2SWS + 1 SWS Seminar)

Zweiter Studienschwerpunkt Katalyse


Fundamentals of Catalysis (A. Bandarenka, A. Jentys, J. Strunk, WS 5 ECTS)
Unifying concepts in homogeneous, heterogeneous, photo- and electrocatalysis. Thermodynamics, kinetics and surface chemistry.

Methods of Catalysis (SS 5 ECTS)

M. Willinger	Electron Microscopy
F. Esch	Scanning Probe Microscopies
S. Günther/Tim Kratky	Photoeletronspectroscopy/-microscopy
B. Reif	Solid state NMR
J. Hauer	Femtosecond spectroscopy
H. Stein	Digital Catalysis
A. Jentys	X-ray absorption spectroscopy
Th. Brück	Biocatalytic methods
O. Hinrichsen	Additive manufacturing of catalysts
G. Kieslich	X-ray diffraction
R. A. Fischer/J. Warnan	Photocatalytic Methods
H. Gasteiger	Electrocatalytic methods

Praktikum - Grundlagen und Anwendung der Katalyse (SS 10 ECTS)

Kombination Zweiter Studienschwerpunkt Katalyse mit 1 SP

