

The Faculty Graduate Center Chemistry offers this lecture series:

Vibrational Spectroscopic Study of Surfaces

By Prof. Dr. Dr. HC. J. Mink

(Research Center of Natural Sciences, Budapest, and University of Pannonia, Veszprém)

Date: November 8- November 14, 2023 Location: 21019 Time: Usually between 9.15-12.30 or upon negotation First course: Wednesday, November 8 – 9.15 h (also to discuss further course appointments) – approximately we will have 7 days with lectures

Everybody (doctorate and graduate student) is asked to participate free of charge. We are looking forward to meet you on November 8 at 9 am.

Dr. Markus Drees

Vibrational Spectroscopic Study of Surfaces

1. Introduction	3
1.1. Special properties of surfaces	4
1.2. Classification of investigation methods used in surface studies	6
2. IR spectroscopy	8
2.1. Transmission techniques	11
2.2. Specular reflection	28
2.3. Attenuated total reflection (ATR)	31
2.4. Grazing angle reflection	35
2.5. Diffuse reflection (DRIFT)	36
2.6. Photoacoustic spectroscopy (PA)	43
2.7. IR reflection-absorption spectroscopy (IRAS or RAIRS)	49
3. Theoretical background and principal application of	
emission FTIR spectroscopy	63
3.1. Laws of Thermal Radiation	67
3.2. Experimental methods of IR emission spectroscopy	74
3.2.1. Detector temperature, response functions	82
3.2.2. Optical arrangements of external emission port	85
3.2.3. Self emission	89
3.2.4. Emission cells	91
3.3. Far-IR emission spectroscopy	93
3.4. Special examples	96
4. Raman spectroscopy of surfaces	100
4.1. Advantages of Raman spectroscopy	100
4.2. Experimental techniques	102
4.3. Examples	107
4.4. Surface enhanced Raman spectroscopy (SERS)	113
4.5. Raman imaging capabilities	116
4.6. Homogeneous catalytic systems	117
5. High resolution electron energy loss spectroscopy (HREELS)	120
5.1. Basic principles	120
5.2. Examples and spectral interpretations	124
5.3. Adsorbeatum- substratum (metal-carbon) stretching modes	136
6. Sum-frequency generation spectroscopy (SFG)	139
6.1. Principles of SFG	139
6.2. Some applications of SFG	142

1. INTRODUCTION

1.1. SPECIAL PROPERTIES OF SURFACES AND INTERFACES

Bulk material Surface:

surface reactions adsorption internal diffusion

Surface modifications:	temperature treatment
	diffusion
	implantation
	cleaning
	grafting
	coating
	deposition, etc.

Importance:

catalysis corrosion thin layers, LB films conducting materials adsrbers, etc.

Surface dimensions:few monolayers: 1 nm
sub-monolayers: 5 Å
coatings:1 μm (thin)
10 μm (thick)

Practical methods of surface studies:

X-ray	\rightarrow analysis of particles,
	leaving the surface
Electron	\rightarrow changes in electron
Ion bombardment	\rightarrow (e.g. SIMS)

Depth of interactions:

X-ray	1 mm
electron	1 µm
ions	10 nm

photon ion particle

1.2. Classification of investigation methods used in surface studies.

A - chemical composition

B - structure of molecules in surfaces

A. COMPOSITON OF SOLID SURFACES

METHOD	PHYSICAL BASIS	TYPE OF INFORMATION	SURFACE
LEED	Elastic back scattering of electrons	Atoms of surface and adsorbates	SC
Auger ES	El. emission from surface atoms (e-, X-ray, ion)	Atoms	SC
XPS, UPS (ESCA)	El. emission from atoms (X-ray, UV)	El. structure oxidation state	SC, DIS
ISS	Elastic reflection of inert gas ions	Atoms	SC
SIMS	Ion beam ejection of surface atoms	Atoms	SC, DIS
EXAFS	Interference of photoemitted el.	Atoms of surface and adsorbetes	DIS
TDS	Thermally induced desorption	Adsorption energies	SC, DIS

B. STRUCTURE OF MOLECULES ON SOLID SURFACES

METHOD	PHYSICAL BASIS	TYPE OF INFORMATION	SURFACE
HREELS	Inelastic reflections of low-energy electrons	Atoms and molecules	SC
IR	Voibrational excitation (A, E and R)	Molecules	SC, DIS
Raman (RR, SERS)	Inelastic light scattering (VIS, NIR)	Molecules	DIS
INS	Inelasticneutron scattering	Molecules (no selection rules!)	DIS
SFG	$\omega_s = \omega_{IR} + \omega_{vis}$ Second order non linear optical process	Vibration spectra of surface molecules	Any interfaces accessible by light