5. HIGH RESOLUTION ELECTRON ENERGY LOSS SPECTROSCOPY (HREELS)

5.1. BASIC PRINCIPLES

The solid materials are transparent under high electron energy (100 keV) exposure.

The electrons are **loosing energy** and changing **directions**.

 $meV = 8.066 cm^{-1}$

Ruthermann (1941)

Electron beam passing through Al-foil, the loss of energy 15 eV. This loss is not dependent from original electron energy.

HIGH RESOLUTION ELECTRON ENERGY LOSS SPECTROSCOPY (HREELS)

PRINCIPLE:

Electron energy loss spectral ranges

a) Elastic scattering; b) Fonon excitations; c) Electron transitions; d) and e) Surface and bulk plasmons;
f) Inner shell ionization

 $\mathbf{E}_{\mathbf{S}} = \mathbf{E}_{\mathbf{i}} - \underbrace{\mathbf{h} \ \mathbf{v}_{\mathbf{i}}}_{\text{vibrational energy}}$

Surface selection rule

Homogeneous magnetic fields perpendicular to picture

Monochromatization Focusing

Electron's trajectory in homogeneous magnetic filed

a) E₁ < E₂ < E₃ different electron energy;
b) same energy but different directions

H. Ibach (Jülich)

Electron Energy Loss (EELS) Spectrometer

5.2. Examples and spectral interpretations

Ni{110}p(2x1)-2CO adsorbate system

Bridged CO molecules in tilted directions $(\theta \approx 70^{\circ})$

CO chemisorbed on Ni{110} surface

Oxygen adsorption and hydroxyl formation on Ag {110}

Dioxygen adsorption on Ag{111} surface

Ag{110} (4 x 1)-O

Ag{110} (1 x 2)-OH

Different bonding of C₂H₄ on different metal surfaces

Chemisorption of benzene on different metal surfaces

Predicted Set of Frequencies of
adsorbed Benzene Assuming Various Symmetries

Oriented	$D_{\rm 0h}$	C_{6v}	$C_{3*}(\sigma_d)$	$C_{3v}(\sigma_v)$	Observed"
A _{2u}	673	673	673	673	830/910
A_{1g}		3062	3062	3062	3000
		992	992	992	
B _{2u}			1310		1420
			1150		1130
B _{1u}				3068	
				1010	
$B_{2_{\mathbf{N}}}$				995	
				703	

" Observed frequencies for benzene (C_6H_6) on Pt(111).

CC Frequencies of Hydrocarbons

Molecule	v(C-C)	v(C=C)	v(C≡C)
Ethane $CH_3 - CH_3$ Ethylene $CH_2 = CH_2$ Acetylene $CH = CH$	995	1623	1974
Propane $CH_3 - CH_2 - CH_3$	869 962		
Propylene CH_2 — CH = CH_2	919	1647	
Allene $CH_2 = C = CH_2$		1071 1513	
Methylacetylene $CH_2 - C \equiv CH$	931 837		2142
Butane $CH_3 - CH_2 - CH_2 - CH_3$ (<i>trans</i>)	$\begin{array}{c}1009\\1059\end{array}$		
1,3-Butadiene $CH_3 = CH - CH = CH_2$	1196	1596 1613 1630	
2-Butyne $CH_3 - C \equiv C - CH_3$	$\begin{array}{c} 725\\ 1152 \end{array}$ 1024		
Butadiene CH≡C−C≡CH	874		2020 2184 2102
Average frequency	~ 950	~1600	~2100

Electron energy loss spectra of the Ni{111} and Pt{111} surfaces, each covered with half a monolayer of CO. On the nickel surface the vibration spectrum indicates only a single CO species in a site of high symmetry. The only possibility for positioning the two-dimensional CO lattice on the surface consistent with the single type of adsorption site is to place all CO molecules into twofold bridges. By similar reasoning, half the CO molecules must occupy on-top sites on the Pt{111} surface. This example shows how powerful the in situ comparison of vibrational spectra and diffraction pattern can be, since a qualitative structure analysis is achieved without analyzing diffraction intensites.

Calculated and measured fundamental frequencies of Pd₃(CCH₃)

		Calculated (DFT) [1]	Pd{111} / (CCH ₃) [2]
a 1	CH str.	2914	2900
	CH ₃ def.	1296	1334
	CC str.	1149	1080
	PdC str.	401	410
a ₂	CC tors.	157	-
e	CH str.	2990	-
	CH ₃ def.	1353	1400
	CH ₃ rock	915	914
	PdC str.	553	-
	PdCC def.	154	-

- [1] I. Pápai et. al., Surf. Sci. Lett. **240**, (1990) L604
- [2] J.A. Gates et. al., Surf. Sci., **124**, (1982) 68

Characterization of C-M bond for M₃(CCH₃) surface species

	Pd{111}	Rh {111}	Pt{111}	Units
$v_{s}(M_{3}C)$	410	420	410	cm ⁻¹ [1]
$F_{S}(M_{3}C)$	1.68	1.86	1.97	Ncm ⁻¹ [2]

[1]	J.A. Gates et al., Surf. Sci., 124 (1982) 68
	G. Somorjai et al. Surf. Sci., 146 (1984) 211
	H. Ibach et al. Surf. Sci., 117 (1982) 685

[2] J. Mink et al., *Surf. Sci.*, (under preparation)

5.3. ADSORBEATUM-SUBSTRATUM (METAL-CARBON) STRETCHING MODES

v(Pt-H) (cm ⁻¹)	$ u(Pt-D)^a $ (cm^{-1})	K(PtH) (cm ⁻¹)
2129 s	1537	2.73
2118 s	1528	2.70
2097 m, b	1513	2.64

Platinum-hydrogen stretching frequencies observed on Pt/SiO₂ and calculated force constants

^a Predicted (calculated) band components of the asymmetric shape experimental band at 1530 cm⁻¹ using harmonic approximation

Surface/system	M-L stretch ^a (cm ⁻¹)	Temperature ^b K
Pt(111)/C ₆ H ₆	360	300
Pt(111)/C ₆ D ₆	350	300
$Ni(100)/C_6H_6$	360	r.t.
$Ni(100)/C_6D_6$	360	r.t.
$Rh(111)/C_6H_6$	345	286
$Ni(111)/C_6H_6$	290	r.t.
Ni(111)/C ₆ D ₆	290	r.t.
$Ag(111)/C_6H_6$	n.o.	140
$Pd(111)/C_6H_6$	n.o.	180
$Pd(111)/C_6D_6$	n.o.	180
Ag(111)/C ₆ H ₅ N	200	140
Ag(111)/C ₆ D ₅ N	175	140
$Pd(111)/C_6H_5N$	n.o.	170
Pd(111)/C ₆ D ₅ N	n.o.	170
Pt(111)/C ₆ H ₅ CH ₃	355	300
Pt(111)/C ₆ D ₅ CD ₃	340	300
Pd(111)/C ₆ H ₅ CH ₃	220	180
Pd(111)/C ₆ D ₅ CH ₃	210	180
Pd(111)/C ₆ D ₅ CD ₃	210	180

. Metal-arene stretching vibrations

^a n.o. = not observed

^b r.t. = room temperature

Surface	Coverage	:	Assignment		
	$\theta = 0.1$	$\theta = 0.4$	$\theta = 1.0$		
Ni(100) [35—38]	2010 vs 2031 v 1889 w 1900 w n.o. n.o.		2035 vs 1930 w 479 vw	linearly bonded bridged v(Ni-C)	
Surface	Coverage	· · · · · · · · · · · · · · · · · · ·	Assignment		
	$\theta = 0.03$	$\theta = 0.55$			
Pt(111)	2076 w	2089 vs 1850 vw	bridged	linearly bonded	
[22]	n.o. 466 w 453 w	1810 vw 462 w 448 w	0112800	three-fold coor. ν (Pt- ¹² C) ν (Pt- ¹³ C)	

IR emission spectra (cm⁻¹) of CO on metal single crystals

Remarks: number of frequencies read from the published spectra; n.o. = not observed

Stretching frequencies (cm⁻¹) and calculated force constants (N cm⁻¹) for adsorbed CO on supported Pt and [Pt(CO)Cl₃]- anion

Stretching vibrations and force constants	Pt/Al ₂ O emission (420 K) Pt ⁺	3 L Pt ⁰	Pt/SiO ₂ transmission (300 K) Pt ⁰ °	Pt/NaY emission (383 K) Pt ^{0 d}	[Pt(CO)Cl ₃] ⁻ solution ref. [58] Pt(II)
CO str ^a	2125 w	2043 vs	2098 vs	2070 s	2083 vs
CO str ^b		1800 m, b	1850 w, b	1850 w, b	
PtC str ^a	437 vw	457 w, b	(475)	465 m	504 sh
PtC str ^b		523 vw (?)	(569)	580 w (?)	_
K(CO) ^a	18.2	16.9	16.5	17.3	16.5
K(CO) ^b		13.1	12.6	13.8	
K(PtC) ^a	2.92	3.53	3.72	3.34	3.9
K(PtC) ^b		5.25	5.34	4.85	

Remarks: Calculated frequencies are shown in brackets

^a Linearly bonded CO

^b Bridged or multicentered CO group

^c Experimental data taken from ref. [59]

^d Experimental data taken from ref. [55]

C ₆ H ₆ liquid IRª	C ₆ H ₆ Ni/SiO ₂ IRª	C ₆ H ₆ Ni∕SiO ₂ Raman ^b	Assignments ^c		;c
1249 vw	1260 m		V ₁₄	<i>b</i> ₂	(b_{2u})
1177 w		1184 m	Vg	e_2	$(e_{2\sigma})$
1150 w		1161 m	V15	b_2	(b_{2y})
1039 m	1125 w, m	1120 vw	V18	e_1	$(e_{1_{u}})$
		1056 w	10	-	(14)
992 vvw		995 vw	V1	a_1	(a_{2a})
969 vvw		969 w	v_{17}	e_2	(e_{2y})
851 w	875 vw	864 m	v_{10}	e_1	(e_{1g})
813 vw, sh	816 w			-	8/
775 w		776 w			
670 vvs	680 vs	684 m	v_{11}	a_1	(a_{2u})
		603 w	v_6	e_2	(e_{2g})
		407 w	V ₁₆	e_2	(e_{2y})
		304 w	v(Ni-	-Ar) a_1	(== /
(400)	(600)	(100)	cm ⁻¹ limit of obser- vation		f obser-

Low frequency vibrations of adsorbed benzene on Ni/SiO₂

^a Ref. [43], support Cabosil, 5% Ni

^b Ref. [44]

^c Assignments refer to $C_{6\nu}$ symmetry, in brackets are the species for D_{6h} symmetry