The Departmental Graduate Center NAT offers this lecture: Course "Practical IR and Raman spectroscopy"

by Prof. Dr. Janos Mink (Hungarian Academy of Science, Budapest)

Course Dates: October 11 – October 27 2023 Location: Lecture hall 21019, Time: 9:00 am-12:00pm Lectures 3h per day (upon negotiation on the first day), practical demonstrations and exam (to test your gained knowledge).

Highlights:

- **Determine how local symmetry in your molecule influences the pattern in your spectrum**
- **Learn how IR and Raman spectrometers work and how you can use them efficiently**
- **- Valuable contribution of Dr. N.P. Ivleva about "Vibrational Spectroscopy in Analytical Chemistry: Focus on Applicability of Raman Microspectroscopy"**
- **Interpret your spectrum for common (mostly organic) compounds**

Everybody (master student, doctorate student, postdocs) is cordially invited.

Practical Infrared and Raman Spectroscopy

5. Interpretation and assignment of IR and Raman spectra 221

INTRODUCTION

Regions of electromagnetic radiation (light)

Conversion factors

Basic interactions between matter and electromagnetic radiation

1. Vibrational and rotational transitions of molecules

Energy level of a diatomic molecule (the actual spacings of electronic levels are much larger, and those of rotational levels are much smaller, than that shown in the figure).

1.1. Molecular rotation of diatomic molecules

Rotational transition for the rigid rotor

Permanent dipole moment: FIR absorption

QUANTUM THEORY

Selection rule: $\Delta J = +1$ (absorption) ∆*J***= -1 (emission)**

Rotational energy: $\mathbf{E}_{rot}/\mathbf{h}c = BJ(J+1)$ (cm^{-1})

Where: *B= h/8π² cI (rotational constant)*

 B=16.85804/I (cm-1)

Where:
$$
I = \mu r^2 = (m_1 m_2/m_1 + m_2) r^2
$$
 (moment of
inertia)
 $(\mu$ -reduced mass, m_1 and m_2 - atomic
weights and r-bond distance in Å)

Considering transition ΔJ = +1 e.g from *J* level to *J*+*1* level:

E(J+1)- E(J)= B(J+1) (J+2) - BJ(J+1)= 2B(J+1)= ν

Pure rotational spectrum of HCl (Resolution 0.12cm⁻¹, 3 m path length and 12 Torr pressure)

FAR INFRARED ABSORPTION BANDS OF HCI AND RELATED CALCULATIONS

(For H35Cl: *B***= 10.44023 and** *D***= 0.00052 cm-1 ,** *r0***=1.28387Å)**

Rotational line intensities

$$
J_{\text{max}} = \sqrt{\frac{kT}{2Bhc} - \frac{1}{2}}
$$

Rotational transition for the non-rigid rotors

QUANTUM THEORY

Selection rule: $\Delta J = +1$ (absorption) ∆*J***= -1 (emission)**

Rotational energy: $E_{rot}/hc = BJ(J+1)-DJ^2(J+1)^2$ (cm⁻¹)

Where: $B = h/8\pi^2 cI$ (rotational constant), cm^{-1}

 D=centrifugal distortion constant, cm-1

Considering transition ΔJ = +1 e.g from *J* level to *J*+*1* level:

 $v = E(J+1)$ - $E(J) = 2B(J+1)$ -4 $D(J+1)^3$ (cm⁻¹) **From the defining equations of B and D it may be shown directly that**

D=1/k(16B³π²μc²)= 4B³/ω²

Where *k* **is the force constant,** μ **is the reduced mass and** ω **is the harmonic stretching frequency. Rotational spectrum of HF can be fitted by expression:**

 $v = 41.122(J+1) - 8.52x10^{-3}(J+1)^3$ (cm⁻¹)

The change in rotational levels and rotational spectrum are shown when passing from rigid to non-rigid diatomic molecule. Levels on the right calculated using D=10-3 B

Pure rotational IR lines of HF and CO

(For HF: *B***= 20.555 and** *D***= 2.13x10-3 cm-1 ,** *r0***=0.929Å; for 12C16O:** *B***= 1.92250 and** *D***= 6.1x10-6 cm-1 ,** *r0***=1.1282Å)**

Rotational Raman spectra of diatomic molecules

Pure rotational Raman spectrum of N2 using 6328 Å He-Ne laser line and photoelectric recording. The 2:1 intensity alteration is due to the spin statistics of the equivalent N atoms $(I = 1)$.

Sellection rule: $J = \pm 2$ **Band positions:** $v(\text{cm}^{-1}) = 4B(J + 3/2)$ **Band separation:** *4B* **cm-1**

First line from Rayleigh line is *6B* **cm-1 When** *J* **is even, intensity is twice N nuclei posses unit spin and therefore follow Bose-Einstein statistic (not Fermi-Dirac)**

Pure rotational FT-Raman spectrum of air $(N_2 + O_2)$

1.2. Rotation-vibration of diatomic molecules

Rotational energy levels and infrared- allowed transitions for the v=0 and 1 levels of a diatomic molecule.

QUANTUM THEORY

The total energy is $E_{r+v}/hc = v_0 (v+1/2) + BJ(J+1) (cm^{-1})$

Substituting v=1 and J= J' for upper state and v=0 and J=J" for ground state yields

 $\mathbf{E}_{\mathbf{r}+\mathbf{v}}/hc = v_0 + B[J'(J'+1) - J''(J''+1)]$ (cm⁻¹)

Inducing or changing of dipole moment: IR absorption

Selection rule: ∆*J***= -1 (P branch)** ∆*J***= +1 (R branch)** ∆*J***= 0 (Q branch forbidden for diatomic molecules, since the only band is "parallel" mode)**

Rotational P branch: $P(cm^{-1}) = v_0 - (B_1 + B_0)J + (B_1 - B_0)J^2$ *(*∆*J***= -1,** *J***= 1, 2, 3…)**

Rotational R branch: $R(cm^{-1}) = v_0 + 2B_1 + (3B_1 - B_0)J + (B_1 - B_0)J$ B_0 J^2 *(*∆*J***= +1,** *J***= 0, 1, 2, 3…)**

Where: B₀ *rotational constant at (y=0) ground state*

 B1 rotational constant at v=1 excited state

 ν0 band origin

Rotational fine structure of the v= 1-0 infrared spectrum of HCl

TREATMENT OF DATA ON VIBRATIONAL-ROTATIONAL BAND OF H³⁵Cl

 B_1 = column four \div 2 × column six.

 B_0 = column five \div 2 × column six.

^c If $J = 1$, then $R_{(J-1)} = R_0$ and $P_{(J+1)} = P_2$; thus, 2906.24 - 2843.62 = 62.62.

Fundamental band of CO. The lines are labeled according to their J" values.

1.3. ROTATION OF LINEAR POLYATOMIC MOLECULES

This type of molecules gives rise to particularly simple spectra in the far-IR or microwave region. Since $I_B = I_C$ *; IA=0*, **as for diatomic molecules, the energy levels are given by formula identical with the above expression:**

 ${\bf rotational~energy:~} {\bf E}_{rot}/{\hbar c} = {\cal B} J(J{+}I){\text{-}}{\cal D} J^2(J{+}I)^2$ $(c{m^{\text{-}I}})$

and the spectrum will show the same *2B* **separation modified by the distortion constant.**

All the expressions are valid what were discussed for diatomic molecules.

But there is on important difference. The linear molecules have N-1 bond lengths.

Let us consider the rotation of OCS.

Molecule OCS, showing the distances of each atom from the centre of gravity.

The moment of inertia is:

 $I = m_o r_o^2 + m_c r_c^2 + m_s r_s^2$

We wish to determine the bond lengths *rco* **and** *rcs* **and the final expression is:**

 $I = m_o r_{co}^2 + m_s r_{cs}^2 - (m_o r_{co} - m_s r_{cs})^2 / M$

where m_i are the atomic weights and M is the total mass of **the molecule.**

From observation of one 16OC34S species it is impossible to determine two unknowns (*rco* **and** *rcs* **) but the use of experimental data for 18OC34S the difficulty can be overcome.**

Pure rotational spectrum of N2O

Rotational constants of some linear molecules.

1.4. ROTATION-VIBRATION OF LINEAR MOLECULES

Expressions for *P* **and** *R* **branches of parallel bands are similar to those of diatomic molecules** (see above). For $CO₂$ $v₃$ is a parallel mode and $v₂$ **is a perpendicular vibration since the induced dipole moment is perpendicular to the molecular axis. In this vibration** ∆*J***= 0 is allowed.**

The fine structure of Q branch ($\Delta J = 0$) will be:

 $Q(cm^{-1}) = v_0 - (B_1 - B_0)J^2 + (B_1 - B_0)J$

 $(B_1 = 0.3897$ and $B_0 = 0.3899$ cm⁻¹ for CO₂; but *Be = 0.3906 cm-1)*

Normal vibrations of CO2. (+ and – denote vibrations are going upward and downward, respectively, in the direction perpendicular to the plane of picture).

Rotational transitions for perpendicular bands, for transitions where ∆*J***= 0 is also allowed**

Rotational–vibrational infrared spectrum of CO2 exhibiting parallel and perpendicular bands.

1.5. ROTATION-VIBRATION OF SYMMETRIC TOP MOLECULES

Methyl chloride and benzene, two representative molecules of these classes, are shown below:

The parallel umbrella vibration of CH3I, showing the typical PQR contour.

CH3 rocking (perpendicular) band of CH3I (240 Torr, 10cm cell)

1.6. ROTATION-VIBRATION OF SPHERICAL-TOP MOLECULES

Methane and carbon tetrachloride are typical examples of tetrahedral spherical-top molecules. For molecules of point group T_d *o*nly class F_2 fundamentals are IR active.

Normal modes of vibrations of tetrahedral XY4 molecule

Rotational fine structure of v3 fundamental of CH4.

Observed type-A, type-B and type-C bands of ethylene

Rotational–vibrational spectrum of H2O vapours together with part of pure rotational spectrum

Infrared spectra of liquid water (ATR corrected)

NIR (blue) and MIR (red) spectra of liquid water. (NIR, 0.2mm CaF2 cell, MIR spectrum is ATR corrected)

1.8.Vibrations of diatomic molecules.

 m_1 m₂

 $\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$ Reduced mass:

Harmonic oscillator.

Potential energy: $V = \frac{1}{2} K q^2$

Schrödinger's wave equation:

$$
\frac{d^2\psi}{dq^2} + \frac{8\pi^2\mu}{h^2} \left(E - \frac{1}{2}Kq^2\right)\psi = 0
$$

Solution gives the eigenvalues:

Potential energy curve for a diatomic molecule.

Potential energy curves for a diatomic molecule: actual potential (solid line), parabolic potential (dashed line), and cubic potential (dotted line).

Experimental (anharmonic) fundamental frequencies and first overtones for diatomic molecules (cm-1)

- 1. Calculate the harmonic frequency (ω_e) and the correction for anharmonicity ($X_e\omega_e$).
- 2. Calculate the energy levels of diatomic molecules in cm-1 for vibrational quantum numbers 0, 1, 2, 3 and 4.

2. Basic experimental methods in vibrational spectroscopy

Infrared Far infrared Raman

13000-4000 cm⁻¹ NIR $\text{Regions:} \quad \} \quad 4000 - 400 \text{ cm}^{-1} \quad \text{MIR}$ $400-10$ cm⁻¹ FIR

Advantages

- All molecules $({\sim}10^{9}$ - $10^{10})$ have IR or Raman spectra
- Fingerprint of molecules
- Group frequencies
- Solid, liquid, gas phases
- Non destructive
- Cheapest and most effective method for structural codetermination
- The *only* experimental method for determination of bond strengths (force constants)
- Analytical applications
- Biological, medical etc.

Extent of Spectral information depends on the **quality** of the spectrum

Basic factors determining the quality of measured spectra

- 1. Operator
- 2. Instrument (performance, scanning parameters, etc.)
- 3. Sample preparation
- 4. Spectral manipulations
- 5. Easy or difficult sample

2.1. **Mid and far- infrared spectroscopy**

HISTORICAL DEVELOPMENT OF INFRARED AND RAMAN SPECTROSCOPY

INTERFEROMETRY

Problems with dispersive systems.

a. No multiplex advantage

N-resolution elements

Each element recorded at N

 $\frac{T}{N}$ time (T scanning time)

b. Great amount of reflections and optics

Optical diagram for the Beckman IR 11 far-infrared spectrometer

Problems:

Slow

Expensive

12 mirrors $+4$ gratings

Detector illumination (spectral range 0-400 cm⁻¹)

*With very narrow slit

MICHELSON INTERFEROMETER

 $I(x) = S(1 + \cos 2\pi v x)$

- S the separated beam intensity
- x path difference
- ν wavenumber
- $I(x)$ resultant intensity of the detector (interferogram)

Advantages: - simple - no slits, choppers

- only 2-4 mirror
- 50% of source energy reaches the detector

PRINCIPLES OF INTERFERENCE

INTERFERENCE OF MONOCHROMATIC LIGHT

Recorded interferogram of R34 rotation-vibrational line (v=984.38 cm^{-1}) from $CO₂$ laser

TWO MONOCHROMATIC LIGHTS

POLYCHROMATIC LIGHT

FOURIER TRANSFORMATION (FT)

$$
S(v) = 4 \sum_{i=1}^{h} [I(x_i) - \frac{1}{2} I(0)] \cos(2\pi v x_i) \Delta x
$$

 $S(v)$ – single beam spectrum $I(x_i)$ – interferogram $I(0)$ – intensity of center burst ν – wavenumber xi – mirror displacement ∆x – sampling interval

Missing wavelengths are absorbed by the sample

$$
\frac{1}{2}
$$

Apodization

Apodization functions

Recorded interferogram of R34 rotation-vibrational line ($v=984.38$ cm⁻¹) **from CO2 laser**

Fourier-transformed band from the above interferogram of R34 line of CO2 laser at 984.38 cm-1 with resolution of 0.5 cm-1 .withh different Apodization function

2.2. BASIC COMPONENTS AND SPECIALITIES OF FTIR SPECTROMETERS

SHAPE AND RANGE OF THE SINGLE BEAM SPECTRA

- 1.) *Source* emission
- 2.) *Beamsplitter* characteristic
- 3.) *Detectors response*
- 4.) *Absorption of* atmosphere (H2O, CO2)

1. SOURCES

Broad band sources (blackbody)

Spectral radiant emittance of a blackbody at various temperatures.

2. Beamsplitters

FIR (no supports) Mylar (polyethylene tereftalate)

MIR (with supports)

NIR (with supports)

VIS (with supports)

3. DETECTORS

Types:

TGS: triglicine sulphate DTGS: deuteron-triglicine sulphate (better) MCT: HgCdTe InSb

SOURCE

KBr/Ge BEAMSPLITTER

DETECTOR (DTGS/KBr)

December 15-16, 2007, Munich

 $A + B + C$

4. ROLE OF THE HE-NE LASER

 $SAMPLING \rightarrow He-Ne$ interference

Range:

0-7900 cm⁻¹

0-15800 cm-1

0-31600 cm⁻¹

0-63200cm-1

5. DYNAMIC ALIGNMENT

A simplified diagram of the interferometer control and signal processing electronics. The piezoelectric actuators are used for dynamic alignment and as part of the scan control.

Principles of Dynamic Alignment

Signals of the three red detectors

a.) Properly aligned

b.) Improper alignment

6. RESOLUTION

 $RES =$ 2∆x – path difference Δx – retardation (cm)

Resolution

- Separate different wavelength in the spectrum
- High resolution: exact location of narrow bands - reduces spectral overlap
- "Infinite" resolution: no deviation from L.-B.'s law in wide concentration range.

Theoretical
\n
$$
Res(\Delta v) = \frac{1}{2\Delta x}
$$
\n
$$
Res(\Delta v) \approx \frac{1.3}{2\Delta x}
$$

∆x – The maximum optical path difference in the interferometer. In all spectral range is the same!

For condensed phase $Res = 4-8$ cm⁻¹ is fine.

7. Spectrometer performance influencing the throughput

Remarks:

^a parameters of spectrometer "A" taken as unit

^b The two interferometer mirrors are not counted

"Filter paper test"

How to produce double beam spectrum

2.3. UV-Visible Fourier spectroscopy.

Sampling intervals (upper trace) and typical UV/VIS interferogram (lower trace) recorded with a dynamically aligned interferometer (source: Xe lamp, TiO2/quartz beamsplitter and PM-detector)

Figure 6-6. FT-UV spectrum of benzene vapor in 1 mm quartz cell.

ICP atomic emission spectrum containing Mn, Fe, and Ba elements recorded by FT-UV spectrometer

2.4. Far-infrared (FIR) spectroscopy.

Different from NIR and MIR:

- nature of the instrumentation (gratings, detectors, sources or beamsplitters, etc.)
- types of transitions

1962, Commission for spectroscopy (*J. Opt. Soc. Am*. **5**2, (1962) 476.) MIR: 4000-200 cm-1 (Gratings) FIR: below 200 cm^{-1}

1970, KBr supported Ge-beamsplitters \sim 350 cm⁻¹ limit CsI \sim 180 cm⁻¹ limit FT-technique: 4000-400 cm-1 MIR 400-10 cm^{-1} 25-1000 μm below MW FIR

 $λ = 1$ mm $v = 10$ cm⁻¹

BASIC COMPONENTS OF FIR SPECTROMETERS

1. Sources: Nernst Globar Hg-lamp

Radiation energy problems in FIR region:

Blackbody (source) radiation

Special radiant emittance of a blackbody at various temperatures

High pressure mercury lamp used as FIR source

HBO 75W

Empty (closed) sample compartment single beam spectrum

Empty (open) sample compartment single beam spectrum

Source: Hg-lamp; Beamsplitter: Wire mesh; Resolution: 4 cm-1

2. Beamsplitters

Already discussed (Mylar beamsplitters)

Special beamsplitters:

Si-based (Nicolet) Metal mesh, 300 lines/inch Electroform mesh

Picture of metal mesh beamsplitter
FAR-IR BEAMSPLITTERS

Single Beam / Wavenumber (cm-1)

File $# 3 = MYLAR$

6.25 Mylar with PEI

2006.07.12. 9:50 du. Res=4

3. DETECTORS

- Pneumatic (Golay) Universal, in FIR w. diamond window
- Pyreelectric, TGS, DTGS With polyethylene window
- Si-bolometer
- Doped- Ge-bolometer

Sensitivity (detectivity, D*) of FIR detectors:

 $D^* = 1/\Phi_N$ (A x Δf)^{1/2} [W⁻¹ cm s^{-1/2}] = [W⁻¹ cm Hz^{1/2}] (Detectivity) Φ_N - Noise equivalent power (NEP) A - Sensitive area of the detector element

∆f - Bandwidth of the measurement

CRITICAL POINTS OF FIR SPECTROMETRY

- Weak source energy (Hg-lamp, synchrotron),
- Beam sizes $(1, 2, 5$ inches),
- Vibrations of Mylar beamsplitters,
- Rotational lines of water vapour,
- Strong absorption of liquid water,
- Strong absorption of polar solvents,
- Etc.

Beam sizes (1, 2, 5, inches)

2.5. Calibration of FTIR spectrometers

- Great importance in dispersive systems.
- FT-instrument: He-Ne laser, internal standard, $\lambda = 632.8$ nm, $v= 15802.8$ cm⁻¹

Importance of calibration

- wavenumber agreement with other instruments,
- Agreement with Raman spectra,
- Detection of small frequency differences: weak dimerisation (associations) intermolecular lattice interaction, weak complexation small isotope shifts etc.

References:

- [1] Pure and Applied Chemistry, Vol. 1, Nº4, 537-699 (1961)
- [2] A. R. H. Cole: Tables of wavenumbers for the calibration of infrared spectrometers, Second edition, IUPAC, Pergamon Press (1977)

TABLES FOR THE CALIBRATION OF INFRA-RED SPECTROMETERS

Summary of data for Charts 1-39 (All vapour phase spectra are measured at 10 cm path length)

 $\ddot{}$

 $\overline{}$

* Liquid films of thickness 200 μ and 30 μ .
† Solid films of thickness 70 μ and 7 μ .

2.5.1. Calibration of FT-MIR spectrometers

Spectral ranges of rotational-vibrational bands used for calibration

Empty sample compartment (open) absorbance spectrum (H2O and CO2)Carbon dioxide (rotational fine structure)

Wavenumber (cm⁻¹)

Polystyrene (solid film): 3350-400 cm-1

Films from commercial sources of polystyrene frequently exhibit strong interference patterns; such films should be slightly bent or otherwise deformed before using for calibration purposes.

Ref.: IUPAC tables for the calibration of infrared spectrometers, Butterworths, Washington, D.C., 1961.

IR spectrum of polystyrene film:

