The Departmental Graduate Center NAT offers this lecture: Course "Practical IR and Raman spectroscopy"

by Prof. Dr. Janos Mink (Hungarian Academy of Science, Budapest)

Course Dates: October 11 – October 27 2023 Location: Lecture hall 21019, Time: 9:00 am-12:00pm Lectures 3h per day (upon negotiation on the first day), practical demonstrations and exam (to test your gained knowledge).

Highlights:

- Determine how local symmetry in your molecule influences the pattern in your spectrum
- Learn how IR and Raman spectrometers work and how you can use them efficiently
- Valuable contribution of Dr. N.P. Ivleva about "Vibrational Spectroscopy in Analytical Chemistry: Focus on Applicability of Raman Microspectroscopy"
- Interpret your spectrum for common (mostly organic) compounds

Everybody (master student, doctorate student, postdocs) is cordially invited.

Practical Infrared and Raman Spectroscopy

Content:	2
Introduction	6
1. Vibrational and rotational transitions of molecules.	8
1.1. Molecular rotation of diatomic molecules.	9
1.2. Molecular rotation-vibration of diatomic molecules	16
1.3. Rotation of linear polyatomic molecules.	19
1.4. Rotation-vibration of linear molecules	21
1.5. Rotation-vibration of symmetric-top molecules	24
1.6. Rotation-vibration of spherical-top molecules	25
1.7. Rotation and rotation- vibration of asymmetric-top mol	. 27
1.8. Vibrations of diatomic molecules	30
2. Basic experimental methods in vibrational	
spectroscopy	33
2.1. Mid and far infrared spectroscopy.	36
Interferometry	36
Michelson interferometer	38
Principles of interference	39
2.2. Basic components and specialities of FTIR	
spectrometers.	47
1.Sources	47
2. Beamsplitter	49
3. Detectors	51
4. Role of the He-Ne laser	56
5. Dynamic alignment	57
6. Resolution	59
7. Spectrometer performance influencing the	
throughput	61

2.4. Far-infrared (FIR) spectroscopy	67
Basic components of FIR spectrometers	68
1. Sources	68
2. Beamsplitters	71
3. Detectors	74
Critical point of FIR spectrometry	75
2.5. Calibration of FTIR spectrometers.	74
2.5.1. Calibration of FT-MIR spectrometers	78
2.5.2. Calibration of FT-FIR spectrometers	82
2.6. Sampling techniques for mid-IR spectroscopy	87
Window materials	87
a) Gas cells	90
b) Liquid cells	92
c) Solutions	93
d) Cast films	95
e) Mulls and pellets	97
2.7. Basic sampling methods for far infrared.	100
a.) Window materials for cells1	100
b.) Sampling techniques	103
2.8. Special (new) accessories.	105
Specular reflection (SR)	105
Internal reflection (Attenuated Total	
Reflection, ATR)	109
Micro ATR accessories	113
Reflection-absorption infrared	
spectroscopy (RAIRS)	118
Diffuse reflectance infrared	
spectroscopy (DRIFT)	121
PAS (Photoacoustic spectroscopy)	123
Variable temperature IR measurements	126

Matrix isolation spectroscopy	127
3. Raman Spectroscopy	129
Developments	130
Background	131
The Raman Effect	131
Raman scattering of simple homonuclear diatomic	
Molecules	132
Fluorescence problems	136
Classical theory of Raman Effect, molecular	
polarisation	138
Polarization of Raman scattering	140
Measurements of depolarization ratios	141
Vibrational Raman spectra	145
Examples	147
Selection rules contrasting IR and Raman spectra	150
Examples for structural determination	154
Lasers for Raman spectroscopy	156
Detectors for Raman spectroscopy	162
3.1. Dispersive single detector systems	165
3.2. Multichannel dispersive spectrometers	169
3.3. Fourier transform Raman spectrometers	171
3.4. Basic sampling techniques.	176
3.5. Laboratory Raman spectroscopy	180
3.6. Calibration of Raman spectrometers	183
3.7. Fermi resonance	185
4. Symmetry of molecules and molecular vibrations	189
Symmetry	190
Point groups	193
Character tables	196
Examples for determination of point groups	198
4.1. Point group analysis of vibrations using Adams-Newto	on 205
	200

Examples for point group analysis	212
Short summary	214
Point group analysis generally used in literature	218

5. Interpretation and assignment of IR and Raman spectra

spectra	221
5.1. Basic ideas of theory of vibrations	221
5.1.1. Normal coordinates and normal frequencies	225
5.1.2. Internal Coordinates	228
5.1.3. Normal Coordinates	233
5.1.4. Calculation and characterisations of the kinetic energy m	natrix 236
5.2 Principles of the origin of group frequencies	244
5.3 Group frequencies of organic molecules	248
5.3.1 Hydrocarbons	248
Aliphatic hydrocarbons	248
Alkenes	262
5.3.2. Benzene and its derivatives.	272
5.3.3. Oxygen containing compounds.	286
Ethers	286
Alcohols, phenols	292
Carbonyl compounds	300
Aldehydes	304
Carboxylic acids, anhydrides, esters	309
Anhydrides	323
Esters	326
Ketones	332
5.3.4. Nitrogen containing compounds.	340
Amines	340
Amines, C=N and N=O compounds	345
Cyanides, isonitriles	347
Organic nitro compounds	353
5.3.5. Amino acids, ureas, carbamates.	355
Ureas	361

INTRODUCTION

Regions of electromagnetic radiation (light)

Conversion factors

" Units	cm ⁻¹	Hz	erg	cal mole ⁻¹	eV
1 cm ⁻¹	1	2.997 925 × 1010	1.986486×10^{-16}	2-859 22	1.239855×10^{-4}
1 Hz	3.33564×10^{-11}	1 .	$6.62\hat{6}20 \times 10^{-27}$	9.53731×10^{-11}	4.135707×10^{-15}
1 erg	5.034015 × 1015	1.509161×10^{26}		1.439334×10^{16}	6.24145×10^{11}
1 cal mole ⁻¹	0.349 746	1.048513×10^{10}	$6.947.66 \times 10^{-17}$	1	4.33634×10^{-5}
1 eV	8065-46	2.417966×10^{14}	1.602192×10^{-12}	23 060-9	1
	h/(8π ²	$/(8\pi^2 c) = 27.9933 \times 10$ = 16.8580 amu $\times 10^6$ = 8.39218 $\times 10^6$ = 5.05391 $\times 10^6$	$D^{-40} \text{ g cm}^2 \cdot \text{cm}^{-1} = I \text{ g}$ $Å^2 \cdot \text{cm}^{-1} = I \text{ ar}$ $D^{-35} \text{ g cm}^2 \cdot \text{MHz} = I \text{ g}$	$cm^2 \times B cm^{-1}$ $mu Å^2 \times B cm^{-1}$ $cm^2 \times B MHz$	

Basic interactions between matter and electromagnetic radiation

1. Vibrational and rotational transitions of molecules

Energy level of a diatomic molecule (the actual spacings of electronic levels are much larger, and those of rotational levels are much smaller, than that shown in the figure).

1.1. Molecular rotation of diatomic molecules

Rotational transition for the rigid rotor

Permanent dipole moment: FIR absorption

QUANTUM THEORY

Selection rule: $\Delta J = +1$ (absorption) $\Delta J = -1$ (emission)

Rotational energy: $E_{rot}/hc = BJ(J+1) (cm^{-1})$

Where: $B = h/8\pi^2 cI$ (rotational constant)

 $B=16.85804/I (cm^{-1})$

Where:
$$I = \mu r^2 = (m_1 m_2/m_1 + m_2) r^2$$
 (moment of
inertia)
(μ -reduced mass, m_1 and m_2 - atomic
weights and r- bond distance in Å)

Considering transition $\Delta J = +1$ e.g from J level to J+1 level:

E(J+1)- E(J)= B(J+1) (J+2) - BJ(J+1)= 2B(J+1)= v

Pure rotational spectrum of HCl (Resolution 0.12cm⁻¹, 3 m path length and 12 Torr pressure)

	Quantum num with ene	bers associated ergy levels	х.
Wavenumber, $\bar{\nu}$ (cm ⁻¹)	Lower $J \rightarrow .$	Upper $J+1$	$\frac{\bar{\nu}}{(J+1)} = 2B$
83.32	3	4	20.830
104.13	4	5	20.826
124.73	5	6	20.788
145.37	6	7	20.767
165.89	7	8	20.736
186.23	8	9	20.692
206.60	9	10	20.660
226.86	10	11	20,624

FAR INFRARED ABSORPTION BANDS OF HCl AND RELATED CALCULATIONS

(For H³⁵Cl: B = 10.44023 and D = 0.00052 cm⁻¹, $r_{\theta} = 1.28387$ Å)

Rotational line intensities

$$J_{\max} = \sqrt{\frac{kT}{2Bhc} - \frac{1}{2}}$$

Rotational transition for the non-rigid rotors

QUANTUM THEORY

Selection rule: $\Delta J = +1$ (absorption) $\Delta J = -1$ (emission)

Rotational energy: $E_{rot}/hc = BJ(J+1)-DJ^2(J+1)^2(cm^{-1})$

Where: $B = h/8\pi^2 cI$ (rotational constant), cm^{-1}

D=centrifugal distortion constant, cm^{-1}

Considering transition $\Delta J = +1$ e.g from J level to J+1 level:

 $v = E(J+1)- E(J) = 2B(J+1)-4D(J+1)^3 (cm^{-1})$ From the defining equations of B and D it may be shown directly that

 $D=1/k(16B^3\pi^2\mu c^2)=4B^3/\omega^2$

Where *k* is the force constant, μ is the reduced mass and ω is the harmonic stretching frequency. Rotational spectrum of HF can be fitted by expression:

 $v = 41.122(J+1)-8.52x10^{-3}(J+1)^{3}(cm^{-1})$

The change in rotational levels and rotational spectrum are shown when passing from rigid to non-rigid diatomic molecule. Levels on the right calculated using $D=10^{-3} B$

Pure rotational IR lines of HF and CO HFa C12O16b J $\bar{\nu} (\mathrm{cm}^{-1})$ $\bar{\nu} (\mathrm{cm}^{-1})$ 0 41.08 3.845 1 82.19 7.690 2 123.15 11.534 3 164.00 15.379 4 204.62 19.222 $\mathbf{5}$ 244.93 23.065 6 285.01 26.907

(For HF: B = 20.555 and $D = 2.13 \times 10^{-3}$ cm⁻¹, $r_0 = 0.929$ Å; for ¹²C¹⁶O: B = 1.92250 and $D = 6.1 \times 10^{-6}$ cm⁻¹, $r_0 = 1.1282$ Å)

324.65

363.93

402.82

441.13

30.748

34.588

38.426

42.263

7

8

9

10

Rotational Raman spectra of diatomic molecules

Pure rotational Raman spectrum of N_2 using 6328 Å He-Ne laser line and photoelectric recording. The 2:1 intensity alteration is due to the spin statistics of the equivalent N atoms (I = 1).

Sellection rule: $J = \pm 2$ Band positions: v (cm⁻¹) = 4B (J + 3/2) Band separation: 4B cm⁻¹

First line from Rayleigh line is $6B \text{ cm}^{-1}$ When J is even, intensity is twice N nuclei posses unit spin and therefore follow Bose-Einstein statistic (not Fermi-Dirac)

Pure rotational FT-Raman spectrum of air $(N_2 + O_2)$

1.2. Rotation-vibration of diatomic molecules

Rotational energy levels and infrared- allowed transitions for the v=0 and 1 levels of a diatomic molecule.

QUANTUM THEORY

The total energy is $E_{r+v}/hc = v_0(v+1/2) + BJ(J+1)(cm^{-1})$

Substituting v=1 and J= J' for upper state and v=0 and J=J'' for ground state yields

 $E_{r+v}/hc = v_0 + B[J'(J'+1) - J''(J''+1)] (cm^{-1})$

Inducing or changing of dipole moment: IR absorption

Selection rule: $\Delta J = -1$ (P branch) $\Delta J = +1$ (R branch) $\Delta J = 0$ (Q branch forbidden for diatomic molecules, since the only band is "parallel" mode)

Rotational P branch: $P(cm^{-1}) = v_0 - (B_1 + B_0)J + (B_1 - B_0)J^2$ ($\Delta J = -1, J = 1, 2, 3...$)

Rotational R branch: $R(cm^{-1}) = v_0 + 2B_1 + (3B_1 - B_0)J + (B_1 - B_0)J^2$ ($\Delta J = +1, J = 0, 1, 2, 3...$)

Where: B_0 rotational constant at (v=0) ground state

 B_1 rotational constant at v=1 excited state

 v_0 band origin

Rotational fine structure of the v= 1-0 infrared spectrum of HCl

-			and the second			The party in the state of the s		
	J	R _J	P_J	$R_J - P_J$	$R_{(J-1)} - P_{(J+1)}$	2J + 1	B_1^a	$B_0{}^b$
	0	2906.24						
	1	2925.90	2865.10	60.80	62.62 ^c	3	10.13	10.37
	2	2944.90	2843.62	101.28	104.34	5	10.13	10.43
	3	2963.29	2821.56	141.73	145.96	7	10.12	10.43
	4	2981.00	2798.94	182.06	187.53	9	10.11	10.42
	5	2998.04	2775.76	222.28	228.96	11	10.10	10.41
	6	3014.41	2752.04	262.37	270.26	13	10.09	10.39
	7	3030.09	2727.78	302.31	311.40	15	10.08	10.38
	8	3045.06	2703.01	342.05	352.36	17	10.06	10.36
	9	3059.32	2677.73	381.59	393.10	19	10.04	10.34
						Average	10.10	10.39

TREATMENT OF DATA ON VIBRATIONAL-ROTATIONAL BAND OF H³⁵Cl

^{*a*} $B_1 =$ column four $\div 2 \times$ column six.

^b $B_0 =$ column five $\div 2 \times$ column six.

^c If J = 1, then $R_{(J-1)} = R_0$ and $P_{(J+1)} = P_2$; thus, 2906.24 - 2843.62 = 62.62.

Fundamental band of CO. The lines are labeled according to their J" values.

1.3. ROTATION OF LINEAR POLYATOMIC MOLECULES

This type of molecules gives rise to particularly simple spectra in the far-IR or microwave region. Since $I_B = I_C$; $I_A=0$, as for diatomic molecules, the energy levels are given by formula identical with the above expression:

rotational energy: $E_{rot}/hc = BJ(J+1)-DJ^2(J+1)^2(cm^{-1})$

and the spectrum will show the same 2B separation modified by the distortion constant.

All the expressions are valid what were discussed for diatomic molecules.

But there is on important difference. The linear molecules have N-1 bond lengths.

Let us consider the rotation of OCS.

Molecule OCS, showing the distances of each atom from the centre of gravity.

The moment of inertia is:

 $I = m_o r_o^2 + m_c r_c^2 + m_s r_s^2$

We wish to determine the bond lengths r_{co} and r_{cs} and the final expression is:

 $I = m_o r_{co}^2 + m_s r_{cs}^2 - (m_o r_{co} - m_s r_{cs})^2 / M$

where m_i are the atomic weights and M is the total mass of the molecule.

From observation of one ¹⁶OC³⁴S species it is impossible to determine two unknowns (r_{co} and r_{cs}) but the use of experimental data for ¹⁸OC³⁴S the difficulty can be overcome.

Pure rotational spectrum of N_2O

Rotational constants of some linear molecules.

Molecule	$B_0(cm^{-1}) D_0 \ge 10^{-6} (cm^{-1})$	
HCN	1.478222	2.910
DCN	1.207751	1.929
NNO	0.419011	0.1788

OCS	0.202857	0.0437
HCCD	0.991527	0.0112
HCCCN	0.151740	0.0190

1.4. ROTATION-VIBRATION OF LINEAR MOLECULES

Expressions for *P* and *R* branches of parallel bands are similar to those of diatomic molecules (see above). For CO₂ v_3 is a parallel mode and v_2 is a perpendicular vibration since the induced dipole moment is perpendicular to the molecular axis. In this vibration $\Delta J = 0$ is allowed.

The fine structure of *Q* branch ($\Delta J = 0$) will be:

 $Q(cm^{-1}) = v_0 - (B_1 - B_0)J^2 + (B_1 - B_0)J$

 $(B_1 = 0.3897 \text{ and } B_0 = 0.3899 \text{ cm}^{-1} \text{ for } CO_2; \text{ but } B_e = 0.3906 \text{ cm}^{-1})$

Normal vibrations of CO₂. (+ and – denote vibrations are going upward and downward, respectively, in the direction perpendicular to the plane of picture).

Rotational transitions for perpendicular bands, for transitions where $\Delta J = 0$ is also allowed

Rotational–vibrational infrared spectrum of CO₂ exhibiting parallel and perpendicular bands.

1.5. ROTATION-VIBRATION OF SYMMETRIC TOP MOLECULES

Methyl chloride and benzene, two representative molecules of these classes, are shown below:

The parallel umbrella vibration of CH₃I, showing the typical PQR contour.

CH₃ rocking (perpendicular) band of CH₃I (240 Torr, 10cm cell)

1.6. ROTATION-VIBRATION OF SPHERICAL-TOP MOLECULES

Methane and carbon tetrachloride are typical examples of tetrahedral spherical-top molecules. For molecules of point group T_d only class F_2 fundamentals are IR active.

Normal modes of vibrations of tetrahedral XY₄ molecule

Rotational fine structure of v_3 fundamental of CH₄.

Observed type-A, type-B and type-C bands of ethylene

Rotational–vibrational spectrum of H₂O vapours together with part of pure rotational spectrum

Infrared spectra of liquid water (ATR corrected)

NIR (blue) and MIR (red) spectra of liquid water. (NIR, 0.2mm CaF₂ cell, MIR spectrum is ATR corrected)

1.8.Vibrations of diatomic molecules.

m₁

 m_2

Reduced mass: $\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$

Harmonic oscillator.

Potential energy: $V = \frac{1}{2}Kq^2$

Schrödinger's wave equation:

$$\frac{d^2\psi}{dq^2} + \frac{8\pi^2\mu}{h^2} \left(E - \frac{1}{2} Kq^2\right)\psi = 0$$

Solution gives the eigenvalues:

Potential energy curve for a diatomic molecule.

Potential energy curves for a diatomic molecule: actual potential (solid line), parabolic potential (dashed line), and cubic potential (dotted line).

Experimental (anharmonic) fundamental frequencies and first overtones for diatomic molecules (cm⁻¹)

Molecule	v_{exp}	$2v_{exp}$	ω _e	$X_e \omega_e$
HH	4160	8082		
HD	3632	7064		
DD	2994	5852		
HF	3962	7738		
DF	2907	5722		
$H^{35}Cl$	2886	5664		
$D^{35}Cl$	2091	4127		
HBr	2558	5030		
HI	2233	4380		
¹⁴ N ¹⁶ O	1876	3724		
$^{12}C^{16}O$	2143	4259		

1. Calculate the harmonic frequency (ω_e) and the correction for anharmonicity $(x_e\omega_e)$.

2. Calculate the energy levels of diatomic molecules in cm⁻¹ for vibrational quantum numbers 0, 1, 2, 3 and 4.

2. Basic experimental methods in vibrational spectroscopy

Infrared Far infrared Raman

Regions: $\begin{cases} 13000-4000 \text{ cm}^{-1} & \text{NIR} \\ 4000-400 \text{ cm}^{-1} & \text{MIR} \\ 400-10 \text{ cm}^{-1} & \text{FIR} \end{cases}$

Advantages

- All molecules (~ 10^9 - 10^{10}) have IR or Raman spectra
- Fingerprint of molecules
- Group frequencies
- Solid, liquid, gas phases
- Non destructive
- Cheapest and most effective method for structural codetermination
- The only experimental method for determination of bond strengths (force constants)
- Analytical applications
- Biological, medical etc.

Extent of Spectral information depends on the **quality** of the spectrum

Good quality spectrum	Bad quality spectrum
- Good S/N	- Bad S/N (noisy)
- Good band intensities	- Weak, noisy bands
- Flat baseline	- Slope baseline
- No H ₂ O and CO ₂ vapour	- Atmospheric distortion
lines	
- No interference	- Interference pattern
- Proper resolution	- Improper resolution
- Good looking	- Bad looking
- Can be published	- Can not be published

Basic factors determining the quality of measured spectra

- 1. Operator
- 2. Instrument (performance, scanning parameters, etc.)
- 3. Sample preparation
- 4. Spectral manipulations
- 5. Easy or difficult sample

2.1. Mid and far- infrared spectroscopy

HISTORICAL DEVELOPMENT OF INFRARED AND RAMAN SPECTROSCOPY

Initial period:	before	1945
Basic developments:		1945-1965
New Vibrational spectroscopy:		1965-

INTERFEROMETRY

Problems with dispersive systems.

a. No multiplex advantage

N-resolution elements

Each element recorded at $\frac{T}{N}$ time

(T scanning time)

b. Great amount of reflections and optics

Optical diagram for the Beckman IR 11 far-infrared spectrometer

Problems:

Slow

Expensive

12 mirrors + 4 gratings

Detector illumination (spectral range 0-400 cm⁻¹)

Resolution (cm ⁻¹)	Spectral elements	Fragments of energy at the detector
8	50	0.0200 (2%)
4	100	0.0100 (1%)
1	400	0.0025 (0.25%)
0.5	800*	0.0012 (0.12%)

*With very narrow slit

MICHELSON INTERFEROMETER

 $I(x) = S(1 + \cos 2\pi v x)$

- S the separated beam intensity
- x path difference
- v wavenumber
- I(x) resultant intensity of the detector (interferogram)

Advantages: - simple - no slits, choppers - only 2-4 mirror

- 50% of source energy reaches the detector

PRINCIPLES OF INTERFERENCE

INTERFERENCE OF MONOCHROMATIC LIGHT

Recorded interferogram of R34 rotation-vibrational line (ν =984.38 cm⁻¹) from CO₂ laser

TWO MONOCHROMATIC LIGHTS

POLYCHROMATIC LIGHT

FOURIER TRANSFORMATION (FT)

$$S(v) = 4\sum_{i=1}^{h} [I(x_i) - \frac{1}{2}I(0)]\cos(2\pi v x_i)\Delta x$$

 $\begin{array}{l} S(\nu) - single \ beam \ spectrum \\ I(x_i) - interferogram \\ I(0) - intensity \ of \ center \ burst \\ \nu - wavenumber \\ x_i - mirror \ displacement \\ \Delta x - sampling \ interval \end{array}$

Missing wavelengths are absorbed by the sample

Apodization

Measured interferogram

Apodization functions

Recorded interferogram of R34 rotation-vibrational line (v=984.38 cm⁻¹) from CO_2 laser

Fourier-transformed band from the above interferogram of R34 line of CO₂ laser at 984.38 cm⁻¹ with resolution of 0.5 cm⁻¹.withh different Apodization function

2.2. BASIC COMPONENTS AND SPECIALITIES OF FTIR SPECTROMETERS

SHAPE AND RANGE OF THE SINGLE BEAM SPECTRA

- 1.) Source emission
- 2.) Beamsplitter characteristic
- 3.) Detectors response
- 4.) Absorption of atmosphere (H₂O, CO₂)

1. SOURCES

Broad band sources (blackbody)

Spectral radiant emittance of a blackbody at various temperatures.

2. Beamsplitters

FIR (no supports) Mylar (polyethylene tereftalate)

Thickness (µm)	Range (cm ⁻¹)
100	25-4
50	40-8
25	110-15
12	300-30
6	550-40
3.5	800-60
Metal mesh (300 l/inch)	800-8

MIR (with supports)

Beamsplitter	Thickness (µm)	Support	Range
Ge	1.5	CsI	6000-150
Ge	1.5	KBr	7000-350

NIR (with supports)

Beamsplitter	Thickness (µm)	Support	Range
Fe ₂ O ₃	0.8	CaF ₂	14000-900

VIS (with supports)

Beamsplitter	Thickness (µm)	Support	Range
TiO ₂	0.4	Quartz	30000-4000

3. DETECTORS

Types:

TGS: triglicine sulphate DTGS: deuteron-triglicine sulphate (better) MCT: HgCdTe InSb

	Detector type	Range (cm^{-1})	Response	Operating
Delector type		Kange (em)	time (sec)	temperature
MIR	DTGS/CsI window	9000-150	10-3	room temp.
	DTGS/KBr window	9000-350	10-3	room temp.
	MCT (broad band)	7000-400	10-6	liquid N ₂

MIR	MCT (narrow band)	7000-750	10-6	liquid N ₂
NIR	InSb	10000-1700	10-6	liquid N ₂
	InAs	33000-12000	10-7	liquid N ₂
	PbSe	10000-2000	10-6	room temp.
	PbS	12000-3100	10-4	room temp.

SOURCE

KBr/Ge BEAMSPLITTER

DETECTOR (DTGS/KBr)

A + B + C

4. ROLE OF THE HE-NE LASER

SAMPLING \rightarrow He-Ne interference

Range:

0-7900 cm⁻¹

0-15800 cm⁻¹

0-31600 cm⁻¹

0-63200cm⁻¹

5. DYNAMIC ALIGNMENT

A simplified diagram of the interferometer control and signal processing electronics. The piezoelectric actuators are used for dynamic alignment and as part of the scan control.

Principles of Dynamic Alignment

Signals of the three red detectors

a.) Properly aligned

b.) Improper alignment

6. RESOLUTION

 $RES = 2\Delta x - path difference$ $\Delta x - retardation (cm)$

Resolution

- Separate different wavelength in the spectrum
- High resolution: exact location of narrow bands - reduces spectral overlap
- "Infinite" resolution: no deviation from L.-B.'s law in wide concentration range.

Theoretical Practical

$$\operatorname{Res}(\Delta v) = \frac{1}{2\Delta x}$$
 $\operatorname{Res}(\Delta v) \approx \frac{1.3}{2\Delta x}$

 Δx – The maximum optical path difference in the interferometer. In all spectral range is the same!

	Maximum Resolution (cm ⁻¹)
Routine spectrometer	1-2
Advanced	0.1
Special	0.01
Very special	0.001 and lower (not commercial)

For condensed phase $\text{Res} = 4-8 \text{ cm}^{-1}$ is fine.

7. Spectrometer performance influencing the throughput

Parameters	Interferometer "A"	Interferometer "B"	Ratio ^a
Beam size (diameter)	$1"(4.91 \text{ cm}^2)(1)$	2" (19.6 cm ²)	~ 4
Number and type of mirrors	14^{b} (Al), R%= 0.652	3(Au), R% = 0.97	1.49
Source intensity	80 w (1)	180 w	2.25
Aspherical source mirror	1	~ 1.3	~ 1.3
Dynamic alignment	1	~ 3	~ 3
Sum of the relative values	5		12
Averaged values	1		2.4

Remarks:

^a parameters of spectrometer "A" taken as unit

^b The two interferometer mirrors are not counted

"Filter paper test"

How to produce double beam spectrum

2.3. UV-Visible Fourier spectroscopy.

Sampling intervals (upper trace) and typical UV/VIS interferogram (lower trace) recorded with a dynamically aligned interferometer (source: Xe lamp, TiO2/quartz beamsplitter and PM-detector)

Figure 6-6. FT-UV spectrum of benzene vapor in 1 mm quartz cell.

ICP atomic emission spectrum containing Mn, Fe, and Ba elements recorded by FT-UV spectrometer

2.4. Far-infrared (FIR) spectroscopy.

Different from NIR and MIR:

- nature of the instrumentation (gratings, detectors, sources or beamsplitters, etc.)
- types of transitions

1962, Commission for spectroscopy (*J. Opt. Soc. Am.* **5**2, (1962) 476.) MIR: 4000-200 cm⁻¹ (Gratings) FIR: below 200 cm⁻¹

1970, KBr supported Ge-beamsplitters $\sim 350 \text{ cm}^{-1} \text{ limit}$ CsI $\sim 180 \text{ cm}^{-1} \text{ limit}$ FT-technique: 4000-400 cm⁻¹ MIR $400-10 \text{ cm}^{-1}$ 25-1000 µm FIR below MW

 $\lambda = 1 \text{ mm}$ $v = 10 \text{ cm}^{-1}$

BASIC COMPONENTS OF FIR SPECTROMETERS

1. Sources: Nernst Globar Hg-lamp

Radiation energy problems in FIR region:

Blackbody (source) radiation

Special radiant emittance of a blackbody at various temperatures

High pressure mercury lamp used as FIR source

Empty (closed) sample compartment single beam spectrum

Empty (open) sample compartment single beam spectrum

Source: Hg-lamp; Beamsplitter: Wire mesh; Resolution: 4 cm⁻¹

2. Beamsplitters

Already discussed (Mylar beamsplitters)

Special beamsplitters:

Si-based (Nicolet) Metal mesh, 300 lines/inch Electroform mesh

Picture of metal mesh beamsplitter
FAR-IR BEAMSPLITTERS

Single Beam / Wavenumber (cm-1)

File # 3 = MYLAR

6.25 Mylar with PEI

2006.07.12. 9:50 du. Res=4

3. DETECTORS

- Pneumatic (Golay) Universal, in FIR w. diamond window
- Pyreelectric, TGS, DTGS With polyethylene window
- Si-bolometer
- Doped- Ge-bolometer

Sensitivity (detectivity, D*) of FIR detectors:

 $\begin{array}{ll} D^{*}=1/\Phi_{N}\left(A\;x\;\Delta f\right)^{1/2} & [W^{\text{-1}}\;cm\;s^{\text{-1/2}}]=[W^{\text{-1}}\;cm\;Hz^{1/2}] \mbox{ (Detectivity)} \\ \Phi_{N}\mbox{ - Noise equivalent power (NEP)} \\ A\mbox{ - Sensitive area of the detector element} \end{array}$

 Δf - Bandwidth of the measurement

CRITICAL POINTS OF FIR SPECTROMETRY

- Weak source energy (Hg-lamp, synchrotron),
- Beam sizes (1, 2, 5 inches),
- Vibrations of Mylar beamsplitters,
- Rotational lines of water vapour,
- Strong absorption of liquid water,
- Strong absorption of polar solvents,
- Etc.

Beam sizes (1, 2, 5, inches)

2.5. Calibration of FTIR spectrometers

- Great importance in dispersive systems.
- FT-instrument: He-Ne laser, internal standard, $\lambda = 632.8 \text{ nm}, v = 15802.8 \text{ cm}^{-1}$

Importance of calibration

- wavenumber agreement with other instruments,
- Agreement with Raman spectra,
- Detection of small frequency differences: weak dimerisation (associations) intermolecular lattice interaction, weak complexation small isotope shifts etc.

References:

- [1] Pure and Applied Chemistry, Vol. 1,Nº4, 537-699 (1961)
- [2] A. R. H. Cole: Tables of wavenumbers for the calibration of infrared spectrometers, Second edition, IUPAC, Pergamon Press (1977)

TABLES FOR THE CALIBRATION OF INFRA-RED SPECTROMETERS

Substance	Region (cm ⁻¹)	Pressure (mm)	1
Water vapour	3943-3744	sat.	
Carbon dioxid e	3737-3683	200	
13	3681-3591	400	
	3608-3569	200	
Ammonia	3540-3491	300	
	3509-3394	75	
Hydrogen cyanide	33 99– 3381	450	
	3378-3245	20	
	3231-3207	450	
Methane	3183-3158	300	
	3149-2958	60	
Hydrogen chloride	3045-2624	120	
Hydrogen bromide	2710-2393	140	
Carbon dioxide	2386-2298	20	
	2311-2292	50	
,,	2282-2236	250	
Carbon monoxide	2233-2055	150	-
Deuterium chloride	2047-1894	250	
Water vapour	1943-1374	sat.	
Deuterium bromide	1909-1727	60	
Ammonia	1613-1580	75	
Methane	1368-1266	60	
memme	1260-1212	250	
Ammonia	1213-972	50	
2 minona	967-962	15	
**	960- 934	50	
3 3	027_024	15	
"	921-771	50	
	761_745	75	
Hydrogen gyanide	786- 635	30	
Acetulene	720_ 604	15	
Carbon dioride	702 632	70	
Nitroux oxide	630- 502	300	
Deuterium granide	620- 591	60	
Demerium cyanice			
Indene	8020 602	*	
	2029- 600	+	
ronystyrene	3002- 035		
	2000		10

Summary of data for Charts 1-39 (All vapour phase spectra are measured at 10 cm path length)

.

* Liquid films of thickness 200 μ and 30 μ . † Solid films of thickness 70 μ and 7 μ .

2.5.1. Calibration of FT-MIR spectrometers

Spectral ranges of rotational-vibrational bands used for calibration

Casas		Range (cm ⁻¹)		
Gases		From		То
CO_2	overtones	3750	-	3560
H_2O	OH stretching	3950	-	3500
$^{12}CO_{2}$	asym. stretch	2390	-	2290
$^{13}CO_{2}$	asym. stretch	2280	-	2230
H_2O	scissoring	1950	-	1300
CO_2	deformation	710	-	630
H ₂ O	pure rotation	600	-	10

Empty sample compartment (open) absorbance spectrum (H₂O and CO₂)Carbon dioxide (rotational fine structure)

Wavenumber (cm⁻¹)

Carbon dioxide	(33 kPa, 250 Torr)	Carbon monoxide	(20 kPa, 150 Torr)
Line No.	Wavenumber ^(a)	Line No.	Wavenumber ^(a)
	(vac.) (cm ⁻¹)		(vac.) (cm ⁻¹)
10	2281.9†	35	2233.35
11	2280.35	36	2230.55
12	2278.7	37	2227.65+
13	2277.1	38	2224.7+
14	2275.4+	39	2221.75+
15	2273.75+	40	2218.75
16	2272.0+	41	2215.7†
17	2270.3+	42	2212.65
18	2268.55†	43	2209.5†
19	2266.75+	44	2206.35
20	2264.95+	45	2203.15
21	2263.15+	46	2199.95†
22	2261.3+	47	2196.65†
23	2259.4+	48	2193.35†
24	2257.5+	49	2190.0+
25	2255.6+		
26	2253.65+		
27	2251.7†		
28	2249.7+		
29	2247.7+		
30	2245.65+		
31	2243.6+		
32	2241.5+		
33	2239.4+		
34	2237.3+		

Polystyrene (solid film): 3350-400 cm⁻¹

Band No.	Wavenumber (cm ⁻¹)	Relative
1	3027.1 ± 0.3	47
2	2924 ± 2	51
3	2850.7 ± 0.3	16
4	1944.0 ± 1	4
5	1871.0 ± 0.3	3
6	1801.6 ± 0.3	3
7	1601.4 ± 0.3	19
8	1583.1 ± 0.3	6
9	1181.4 ± 0.3	5
10	1154.3 ± 0.3	4
11	1069.1 ± 0.3	6
12	1028.0 ± 0.3	12
13	906.7 ± 0.3	8
14	698.9 ± 0.5	100
15	539.0 ± 0.5	20

Films from commercial sources of polystyrene frequently exhibit strong interference patterns; such films should be slightly bent or otherwise deformed before using for calibration purposes.

Ref.: IUPAC tables for the calibration of infrared spectrometers, Butterworths, Washington, D.C., 1961.

IR spectrum of polystyrene film:

