5. INTERPRETATION AND ASSIGNMENT OF IR AND RAMAN SPECTRA

Introduction

- Masses (atomic weight)
- Force constants
- Geometry (bond angles, distances)

These molecular parameters:

- a) determine the band position and
- b) allow to calculate the form and frequencies of all normal modes.

Examples:

1.

$H^{35}Cl$	2886 cm ⁻¹	$F(XCl) = 4.81 \text{ Ncm}^{-1}$
$D^{35}Cl$	2091 cm ⁻¹	
$T^{35}Cl$	1739 cm ⁻¹	

2. CC stretching force constants

CH ₃ -CH ₃	4.50	$(993 \text{ cm}^{-1}, \text{Raman})$
CH ₂ =CH ₂	9.60	(1623 cm ⁻¹ , Raman)
CH≡CH	15.6	$(1974 \text{ cm}^{-1}, \text{Raman})$

3. CH₂Cl-CH₂Cl C-Cl stretching vibrational (cm⁻¹): gauche: 653 (R) 656 (IR) trans: 753 (R) (- IR) For complicated (big) molecules the calculations become very complex, so **empirical** methods are frequently used. Certain sub molecular groups, e.g. $-CH_3$, -NO, $-COO^-$, $-C\equiv N$, -SCN, C_6H_5 - etc. consistently produce bands in a characteristic frequency region of the vibrational spectrum. These bands are characteristic **GROUP FREQUENCIES**.

Example:

_	Common bands	Not common bands
n-heptane	characteristic	e.g. 1150-1350 cm ⁻¹ region
n-octane	to n-alkanes	characteristic bands
n-nonane	(CH ₃ , CH ₂ , groups)	of chain length

The non common bands as so-called

FINGERPRINT BANDS, because they are characteristic of individual compound.

In order to understand the origin of group frequencies, some knowledge is necessary about theory of normal vibrations.

5.1. Basic ideas of theory of vibrations

The **diatomic molecules** have is only one stretching vibration (v) which can be calculated very sample way using atomic masses $(m_1, and m_2)$ and force constant (F):

$$\nu = \frac{1}{2\pi c} \sqrt{\frac{F}{\mu}} = \frac{1}{2\pi c} \sqrt{F\left(\frac{1}{m_1} + \frac{1}{m_2}\right)}, \quad cm^{-1}$$

where $\mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$ the reduced mass.

F is the force constant (Ncm⁻¹ = mdyn/Å) When *F* is in Ncm⁻¹, and m_i are atomic weight, than

$$\frac{1}{2\pi c} = 1302.8 \text{ sec/cm}, \quad (6.025.10^{23})^{1/2}/2 \pi c$$

The force constant can be calculated as

F = 4
$$\pi^2 c^2 v^2 \mu$$
 = 0.589148 $\mu (v/1000)^2$, Ncm⁻¹
 $\left(\frac{4 \cdot (3.14)^2 \cdot (3x10^{10})^2}{6.025 \cdot 10^{23}} = 0.589148\right)$

In **polyatomic molecules** the situation is more complicated because all the nuclei perform their own harmonic oscillations.

Since the atom can, move in three directions (x, y, z) an N-atom molecule has 3N degrees of freedom of motion.

The 3N includes three (3T) translations and three rotations (3R) of the whole molecule.

This the vibrational degrees of freedom is 3N-6 or 3N-5 for linear molecules.

(One rotation along the axis is inactive.)

In the case of H₂O molecule, we have 3x3 - 6 = 3 normal vibrations shown below.

Figure below illustrate the normal modes of CO₂ molecule

Normal modes of vibration in CO_2 (+ and – denote vibrations going upward and downward, respectively, in direction perpendicular to the paper plane).

How can we calculate these vibrations?

5.1.1. Normal coordinates and normal frequencies

1

2 3

T – function of the velocities (\dot{q})

V – function of the displacement (q)

Newton's equation in Lagrangian from:

 $\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial T}{\partial \dot{q}_{i}} \right) + \left(\frac{\partial V}{\partial q_{i}} \right) = 0$ i = 1, 2, ..., N N – number of atoms

Kinetic energy of molecules

Displacement vectors (ξ_i)

Space fixed Coord. Syst.

Mass weighted Cartesian coordinates

$$\sqrt{m_{1}} \xi_{1} = q_{1}$$

$$\sqrt{m_{2}} \xi_{2} = q_{2}$$

$$\sqrt{m_{3}} \xi_{3} = q_{3}$$

$$T = \frac{1}{2} \sum_{i}^{3N} \dot{q}_{i}^{2} , \qquad 1, 2, ..., 3N$$

$$T = \frac{1}{2} \{ \dot{q} \} \| \dot{q} \|$$

Potential energy of molecules

- No analytical expression

 $V=E_e^{vib}-E_e^{eq}$ (very general)

For small displacements: Expand V in a Tailor's power series

$$\begin{split} \mathbf{V} &= \mathbf{f} \ (\mathbf{q})_0 \\ \mathbf{V} &= \mathbf{V}_0 + \sum_{i}^{3N} \left(\frac{\partial \mathbf{V}}{\partial \mathbf{q}_i} \right)_0 \mathbf{q}_i + \frac{1}{2} \sum_{i,j}^{3N} \left(\frac{\partial^2 \mathbf{V}}{\partial \mathbf{q}_i \partial \mathbf{q}_j} \right)_0 \mathbf{q}_i \mathbf{q}_j + \frac{1}{6} \sum_{i,j,k}^{3N} \left(\frac{\partial^3 \mathbf{V}}{\partial \mathbf{q}_i \partial \mathbf{q}_j \partial \mathbf{q}_k} \right)_0 \mathbf{q}_i \mathbf{q}_j \mathbf{q}_k + \dots \end{split}$$
Special conditions:

Special conditions:

$$V = 0$$
 (arbitrary)
 $\left(\frac{\partial V}{\partial q_i}\right)_0 = 0$ (equilibrium)

In harmonic approximation

$$V = \frac{1}{2} \sum_{i,j}^{3N} f_{ij} q_i q_j$$
$$f_{ij} = \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_0$$
$$\left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_0 = \left(\frac{\partial^2 V}{\partial q_j \partial q_i}\right)_0$$
$$f_{ij} = f_{ji}$$

$$\mathbf{V} = \frac{1}{2} \{ \mathbf{q} \} \mathbf{F}_{\mathbf{q}} \| \mathbf{q} \|$$
$$\mathbf{F}_{\mathbf{q}} \begin{bmatrix} \mathbf{f}_{11} & \mathbf{f}_{12} & \cdots & \mathbf{f}_{1,3N} \\ \mathbf{f}_{21} & \mathbf{f}_{22} & \cdots & \mathbf{f}_{2,3N} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{f}_{3N,1} & \mathbf{f}_{3N,2} & \cdots & \mathbf{f}_{3N,3N} \end{bmatrix}$$

Newton's equation

$$\begin{pmatrix} \frac{\partial T}{\partial \dot{q}_i} \end{pmatrix} = \sum_{i}^{3N} \dot{q}_i , \qquad \frac{d}{dT} \begin{pmatrix} \frac{\partial T}{\partial \dot{q}_i} \end{pmatrix} = \sum_{i}^{3N} \ddot{q}_i$$
$$\begin{pmatrix} \frac{\partial V}{\partial q} \end{pmatrix} = \frac{1}{2} \sum_{ij}^{3N} f_{ij} q_j + \sum_{i}^{3N} f_{ii} q_j$$
$$i \neq j \qquad i = j$$

$$\sum_{i}^{3N} \ddot{q}_{i} + \frac{1}{2} \sum_{ij}^{3N} f_{ij} q_{j} + \sum_{i}^{3N} f_{ii} q_{i} = 0$$

$$\dot{q}_i + \frac{1}{2} \sum_{j=1}^{3N} f_{ij} q_j + f_{ii} q_j = 0$$
 $i = 1, 2, ..., 3N$

$$\ddot{q}_i + f_{ii}q_j = 0$$
 $i = 1, 2, ..., 3N$

$$q_{i} = q_{i}^{0} \qquad \sin(2\pi c v_{i} t + \phi_{i}) \qquad i = 1, 2, ..., 3N$$

$$v_{i}$$

$$\phi_{i}$$

$$q_{i}^{0}$$

(1) $f_{ij} = 0$

(3)
$$6\lambda i = 0$$
 (3T + 3R)
(3T + 2R) linear

5.1.2. Internal coordinates

Characteristic to molecular structure Types:

Molecule	Rotational axes	Rotation	Translation	Vibration
Linear	o			
Symmetric Top				
Asymmetric Top				
Spherical Top				

Molecule	Coordinates	Total N ^o of coord.	3N-6 3N-5	Redundant
0 <u> </u>				
НССН				
F F F				

Further examples for introducing internal coordinates:

The V and T in terms of internal coordinates

Cartesian \bar{q}_j displacements

Opposite way:

$$\vec{q} = \sum_{i} \vec{b}'_{ji} r_{i}$$

$$\vec{q}_{1} = \vec{b}'_{11} r_{1} + \vec{b}'_{12} r_{2} + \dots + \vec{b}'_{1n} r_{n} \qquad n = 3N - 6$$

$$\vec{q}_{2} = \vec{b}'_{21} r_{1} + \vec{b}'_{22} r_{2} + \dots + \vec{b}'_{2n} r_{n}$$

$$\dots$$

$$\vec{q}_{N} = \vec{b}'_{N_{1}} r_{1} + \vec{b}'_{N_{2}} r_{2} + \dots + \vec{b}'_{N,n} r_{n}$$

$$\|\vec{q}\| = \vec{B}' \|r\|$$

Transformation of $\vec{q} - s$ to r coordinates:

Potential energy

- $V = \frac{1}{2} \{\vec{q}\} F_q \|\vec{q}\| = \frac{1}{2} \{r\} \underbrace{\widetilde{B}' F_q \vec{B}'}_{F \text{ (internal)}} \|r\|$ a. $V = \frac{1}{2} \{r\} F \|r\|$
- _{b.} $F = \vec{B}' F_q \vec{B}'$

Kinetic energy

$$T = \frac{1}{2} \{ \vec{p} \} M^{-1} \| \vec{p} \| \qquad \vec{p} \text{ momentume}$$

$$\mathbf{M}^{-1} = \begin{bmatrix} \frac{1}{\mathbf{m}_{1}} & & & 0 \\ & \frac{1}{\mathbf{m}_{2}} & & \\ & & \ddots & \\ 0 & & & \frac{1}{\mathbf{m}_{N}} \end{bmatrix}$$

$$m_i$$
 – atomic mass (i=1, 2, ..., N)
 \vec{p} - its momentum

$$\mathbf{T} = \frac{1}{2} \left\{ \mathbf{p} \right\} \vec{\mathbf{B}} \mathbf{M}^{-1} \vec{\mathbf{B}} \| \mathbf{p} |$$

a.
$$T = \frac{1}{2} \{p\} G \|p\|$$

 $_{b.} G = \vec{B} M^{-1} \vec{B}$

5.1.3. Normal coordinates

Problem in Schrödinger equation: r_i r_j cross terms

Transformation

$$\begin{split} r_1 &= l_{11} \; Q_1 + l_{12} \; Q_2 + \ldots + l_{1m} \; Q_n & n = 3N\text{-}6 \\ r_2 &= l_{21} \; Q_1 + l_{22} \; Q_2 + \ldots + l_{2m} \; Q_n \\ \ldots & \ldots \\ r_n &= l_{n1} \; Q_1 + l_{n2} \; Q_2 + \ldots + l_{nm} \; Q_n \end{split}$$

$$\|\mathbf{r}\| = \mathbf{L}\|\mathbf{Q}\| \qquad \{\mathbf{r}\} = \{\mathbf{Q}\}\mathbf{\tilde{L}}$$
$$\|\mathbf{\dot{r}}\| = \mathbf{L}\|\mathbf{\dot{Q}}\| \qquad \{\mathbf{\dot{r}}\} = \{\mathbf{\dot{Q}}\}\mathbf{\tilde{L}}$$
$$\mathbf{T} = \frac{1}{2}\{\mathbf{\dot{r}}\}\mathbf{G}^{-1}\|\mathbf{\dot{r}}\|$$
$$\mathbf{T} = \frac{1}{2}\{\mathbf{\dot{Q}}\}\mathbf{\tilde{L}}\mathbf{G}^{-1}\mathbf{L}\|\mathbf{\dot{Q}}\| = \frac{1}{2}\{\mathbf{\dot{Q}}\}\|\mathbf{\dot{Q}}\|$$
$$\underbrace{\mathbf{\dot{C}}}_{\mathbf{E}}$$

$$V = \frac{1}{2} \{r\} F ||r|| = \frac{1}{2} \{Q\} \tilde{L}FL ||Q|| = \frac{1}{2} \{Q\} \Lambda ||Q||$$

(1)
$$\tilde{L}G^{-1}L = E$$

(2) $\tilde{L}FL = \Lambda$ Properties of L

From (1) $\tilde{L} = L^{-1}G \rightarrow \text{to}$ (2) $L^{-1}GFL = \Lambda$ **GFL = \Lambda**L

Computation:

Calculate G (masses, bond lengths and angles)

Construct F (transferability)

Diagonalise G:

 $\tilde{L}_1 G L_1 = \mu$ (eigenvalues)

Multiply F: $\sqrt{\mu}\,\widetilde{L}_1FL_1\sqrt{\mu}=F'$

Diagonalise F': $\tilde{L}_2 F' L_2 = \Lambda$ (eigenvalues) $L = L_1 \sqrt{\mu} L_2$ (eigenvectors)

Examples: for introduction of internal coordinates

235

5.1.4. Calculation and characterisation of kinetic energy matrix

Atomic masses Molecular geometry $\} \implies$ G-matrix

 $G = \vec{B} M^{-1} \vec{B}$ $\cdots G = B_x M^{-1} \vec{B}_x + B_y M^{-1} \vec{B}_y + B_z M^{-1} \vec{B}_z$

G-matrix for water type molecule:

Internal coordinates: r_1 , r_2 , α

G-matrix in internal coordinates:

r ₁	\mathbf{r}_2	α
$\mu_1 + \mu_3$	μ ₃ cosφ	$-\mu_3 \sigma_{23} \sin \varphi$
	$\mu_1 + \mu_3$	$-\mu_3 \sigma_{13} \sin \varphi$
Sym.		$-\mu_1 \sigma_{13}^2 + \mu_2 \sigma_{23}^2 + \mu_3(\sigma_{13}^2 + \sigma_{23}^2 - 2\sigma_{13} \sigma_{23} \cos\varphi)$

 $\mu_i - inverse \ masses \ of \ atom \ i$

 $\sigma_{ij}-inverse$ bond lengths between atoms i and j

 ϕ – is the bond angle

G-matrix

Here, the atoms surrounded by a double circle are those common to both coordinates. The symbols μ and ρ denote the reciprocals of mass and bond distance, respectively. The spherical angle $\psi_{\alpha\beta\gamma}$ is defined as

 $\cos \psi_{\alpha\beta\gamma} = \frac{\cos \phi_{\alpha\delta\gamma} - \cos \phi_{\alpha\delta\beta} \cos \phi_{\beta\delta\gamma}}{\sin \phi_{\alpha\delta\beta} \sin \phi_{\beta\delta\gamma}}$

Solid angles involving positions α , β , γ , and δ .

Special properties of matrix G

1.

- Identical coordinates \rightarrow identical matrix elements
- Diagonal elements are always positive and bigger than offdiagonal ones
- 2. No common atom, no interaction term
- 3. Planar molecules:

2N-3 in-plane N-3 o.-o.p.

$$\mathbf{B}_{\mathbf{x}} = \begin{bmatrix} \mathbf{b}_{\mathbf{x}} \\ \cdots \\ \mathbf{0} \end{bmatrix} \quad \mathbf{B}_{\mathbf{y}} = \begin{bmatrix} \mathbf{b}_{\mathbf{y}} \\ \cdots \\ \mathbf{0} \end{bmatrix} \quad \mathbf{B}_{\mathbf{z}} = \begin{bmatrix} \mathbf{0} \\ \cdots \\ \mathbf{b}_{\mathbf{z}} \end{bmatrix}$$

 $G \text{ (in-plane)} = B_x M^{-1} \tilde{B}_x + B_y M^{-1} \tilde{B}_y$ $G \text{ (o.o.p.)} = B_z M^{-1} \tilde{B}_z$

- 4. Redundancy conditions
- a. Branching redundancies

MATRIX	G IN INTE	RNAL CO	ORDINAT	ES	4				
ROW 1	\mathbf{r}_{2}	r ₃	r_4	α_{23}	α_{13}	α_{12}	α_{14}	α_{24}	α_{34}
1.075419 ROW 2	027752	027752	027752	.072014	.072014	.072014	072014	072014	072014
027752 ROW 3	1.075419	027752	027752	.072014	072014	072014	072015	.072014	.072014
027752 ROW 4	2027752	1.075420	027752	072013	.072014	072013	.072014	072014	.072014
027752 ROW 5	2027752	027752	1.075420	072013	072013	.072014	.072014	.072014	072014
.072014 ROW 6	.072014	072013	072013	1.857037	417542	417542	186869	417541	417541
.072014 ROW 7	072014	.072014	072013	417542	1.857034	417542	417541	186869	417541
.072014 ROW 8	072014	072013	.072014	417542	417542	1.857034	417541	417541	186869
072014 ROW 9	072015	.072014	.072014	186869	417541	417541	1.857034	417542	417542
072014 ROW 10	4 .072014	072014	.072014	417541	186869	417541	417542	1.857034	417542
072014	4 .072014	.072014	072014	417541	417541	186869	417542	417542	1.857034

239

SUMMARY

(1) It means, that the vibrations of a polyatomic molecule have been **separated** to the vibrational motion of 3N-6 **oscillators.** If the vibrational frequency of two or three oscillators are identical, then the two (or more) vibrations are said to be **degenerate**. The energy expression then has a form $E_i = hcv_i (\Sigma v_{ik} + \alpha_i/2)$

(2) The complicated vibrational motions have been separated into 3N-6 **normal** vibrations along Q_i coordinate.

(3) The vibrations along the Q_i normal coordinates mathematically refer to an **one-dimensional** motion, which is basically identical with the motions of diatomic molecules, but here Q_i represents a linear combination of internal coordinates.

(4) For each given solution $\lambda_k = 4\pi^2 c^2 v_k^2$ of the secular equation, i.e. for each normal coordinate Q_k , the molecule undergoes a simple motion in which all the nuclei move **in phase** with the same frequency v_k , but with **different amplitudes**, Q_k^0 . In other words, all the nuclei will pass through the equilibrium position at the same time, reach their maximum displacement in a given direction, pass again through the equilibrium position, reach their maximum displacement in the opposite direction and so forth.

Mode of motions of this kind is called a **normal mode of vibrations** or simply a **normal vibration** and the frequency associated with it is call ed a **normal** or **fundamental** frequency of vibrations. Normal modes of H₂O

Normal or fundamental frequencies

The relative 'length of the arrows can be chosen so that they give the relative amplitudes of displacements of the individual nuclei. If this is done in the proper scale, then each drawing will represent the normal coordinate as well. (5) The theoretical calculation of vibrations simply lead to the determination of the G and F matrices.

Bond A-B	Force Const. f (N cm ⁻¹)	Bond Order	Compound	Bond A-B	Force Const. f (N cm ⁻¹)	Bond Order	Compound
H-H	5.14	0.77	H ₂	H-0	7.40	1.0	H0-
Li-Li	1.24	1.2	Li ₂	H-F	8.85	1.1	HF
8-8	3.58	1.2	B ₂	H-AI	1.76	0.60	AlH ₄
C-C	16.5	3.2	нссн	H-Si	2.98	0.84	SiH4
N-N	22.42	3.2	N ₂	H-P	3.11	0.82	PH ₃
0-0	11.41	1.4	02	H-S	4.29	1.0	H ₂ S
F-F	4.45	0.58	F ₂	H-CI	4.81	1.0	HCI
Na-Na	0.17	0.24	Na ₂	H-Ge	2.81	0.82	GeH ₄
Si-Si	4.65	2.0	Si ₂	H-As	2.85	0.81	AsH ₃
Si-Si	~1.7	~0.9	Si ₂ H ₆	H-Se	3.51	0.93	H ₂ Se
P-P	5.56	2.1	P ₂	H-Br	3.84	0.98	HBr
P-P	2.07	0.95	Pa	H-Sn	2.03	0.76	SnH ₄
S-S	4.96	1.7	S2	H-Sh	2.09	0.77	SbH ₃
S-S	2.5	0.99	Sa	H-I	2.92	0.97	HI
CI-CI	3.24	1.1	Cl ₂	C-H	5.50	1.0	CH4
Ni-Ni	0.11	0.2	Ni solid	C-B	3.82	1.1	B(CH ₃) ₃
As-As	3.91	1.8	As ₂	C-C	16.5	3.2	HCCH
Se-Se	3.61	1.6	BOSe2	C-C	9.15	1.9	H ₂ CCH ₂
Br-Br	2.36	1.1	Br ₂	C-C	7.6	1.7	C ₆ H ₆
Rb-Rb	0.08	0.2	Rb ₂	C-C	4.4	1.1	H ₃ CCH ₃
Cd-Cd	1.11	1.0	Cd3+	C-N	18.07	3.0	HCN
Sb-Sb	2.61	1.9	Sb ₂	C-N	11.84	2.1	CN_2^{2-}
Te-Te	2.37	1.7	Te ₂	C-N	6.54	1.3	NNCH ₂
1-1	1.70	1.2	l ₂	C-0	18.56	2.8	CO
Hg-Hg	1.69	1.5	Hg}+	C-0	15.61	2.4	C02
Pb-Pb	4.02	3	Pb ₂	C-0	12.76	2.0	OCH2
Bi-Bi	1.84	1.6	Bi ₂	C-0	7.86	1.3	CO3-
H-B	2.75	0.68	BHa	C-0	5.1	0.96	0(CH ₃) ₂
H-C	5.50	1.0	CH ₄	G-F	6.98	1.1	CF ₄
H-N	7.05	1.1	NHa	C-P	8.95	2.4	HCP
H-0	8.45	1,1	H ₂ 0	C-S	7.67	2.0	CS ₂

Selected Force Constants and Bond Orders (according to Siebert) of Organic and Inorganic Compounds

Selected Force Constants and Bond Orders (according to Siebert) of Organic and Inorganic Compounds

Bond A-B	Force Const. f (N cm ⁻¹)	Bond Order	Compound	Bond A-B	Force Const. f (N cm ⁻¹)	Bond Order	Compound
C-S	3.3	1.0	S(CH ₃) ₂	0-0	6.18	0.89	02
C-CI	3.12	0.93	CCI4	0-0	5.70	0.83	03
C-NI	2.91	1.2	NiaCO	0-Na	~3.2	~1,1	Na-OH
C-Ni	1.43	0.68	NiCO	0-Mg	3.5	1.1	MgO
C-Se	5.94	1.8	CSe ₂	0-AI	5.66	1.5	AIO
C-Br	2.42	0.86	CBr ₄	0-AI	3.8	1.1	AI(0H)4
C-Rh	2.4	1.2	(Rh(CN) ₆) ³⁻	0-Si	9.25	2.1	SiO
C-Ag	2.0	0.99	(Ag(CN) ₂)	0-Si	4.75	1.2	SiO4
C-I	1.69	0.79	Cl ₄	0-P	9.41	2.0	PO
N-H	7.05	1.1	NH ₃	0-P	6.16	1.4	P04-
N-B	7.2	1.6	BN3-	0-S	10.01	2.0	S02
N-C	18.07	3.0	HCN	0-CI	4.26	1.0	CI02
N-N	22.42	3.2	N ₂	0-CI	3.30	0.82	C10
N-N	16.01	2.4	N-NNH	0-Ca	2.85	1.2	CaO
N-N	13.15	2.0	N-N-N	0-Ti	7.19	2.4	TiO
N-0	25.07	3.1	N-0+	0-V	7.36	2.3	VO
N-0	17.17	2.3	NO ⁺ 2	0-Cr	5.82	1.9	CrO
N-0	15.49	2.1	NO	0-Mn	5.16	1.6	MnO
N-0	15.18	2.0	ONCI	0-Fe	5.67	1.7	FeO
N-0	11.78	1.7	NNO	0-Cu	2.97	0.93	CuO
N-F	4.16	0.66	NF ₃	0-Ge	7.53	1.8	74GeO
N-Si	3.8	1.1	((CH ₃) ₃ Si) ₂ NH	0-Se	6.45	1.5	SeO
N-S	12.54	2.5	NSF3	0-Mo	3.05	1.2	Ba ₂ CaMoO ₆ (solid)
N-S	8.3	1.9	HNSO	0-Ru	6.70	2.2	RuO ₄
N-S	3.1	0.87	H ₃ N-SO ₃	0-Ag	2.00	0.79	Ag0
0-Li	1.58	0.66	LiO	0-Sn	5.53	1.7	Sn0
0-Be	7.51	1.8	BeO	0-Te	5.31	1.6	TeO
0-B	13.66	2.5	BO	0-8a	3.79	1.8	BaO
0-B	6.35	1.3	BO3	0-Ce	6.33	2.6	CeO
0-0	16.59	2.0	02	0-Pr	5.68	2.4	PrO
0-0	11.41	1.4	02	0-Nd	3.5	1.6	NdAc ₃ H ₂ O (polym

Basic references

- 1. M. Eliashevich. Compt. Rend. Acad. Sci. U.S.S.R. 28, 605 (1940).
- 2. E.B. Wilson jr., J. Chem. Phys., 9, 76 (1941).
- 3. J.C. Decius, J. Chem. Phys. 16, 1025 (1948).
- 4. S.M. Ferigle, and A.G. Meister, J. Chem. Phys., 19, 982 (1951).
- 5. J.B. Lohman, Office of Naval Research Tech. Report, 17, (1951).
- 6. D. Kivelson, and E.B. Wilson jr., J. Chem. Phys., 20, 1575 (1952), 21, 1229 (1953).
- 7. R.J. Malhiot, and S.M. Ferigle, J. Chem. Phys., 22, 717 (1954).
- 8. T. Miyazawa, J. Chem. Phys., 29, 246 (1958).
- 9. R.J. Malhiot and SM. Ferigle, J. Chem. Phys., 23, 30 (1955).
- 10. W.T. King, Dissertation, University of Minnesota (1956).
- 11. J.H. Meal, and S.R. Polo, J. Chem. Phys., 24, 1119 (1956); 24, 1126 (1956).
- 12. D.E. Mann, T. Shimanouchi, J.H. Meal, and L. Fano, J. Chem. Phys., 27, 3 (1957).
- 13. T. Miyazawa, J. Chem. Phys., 29, 246 (1958).
- 14. I. Nakagawa, and T. Shimanouchi, J. Chem. Soc. Japan, 80, 128 (1959).
- 15. L. Henry, and G. Amat, *Cah. Phys.*, **14**, 230 (1960).
- 16. J. Overend, and J.R. Sherer, J. Chem. Phys., 32, 1289 (1960).
- 17. I.M. Mills, Spectrochim. Acta, 16, 35 (1960).
- 18. I.M. Mills, J. Mol. Spectrosc., 6, 334 (1960); erratum, 17, 164 (1965).
- 19. T. Oka. and Y. Morino, J. Mol. Spectrosc., 6, 472 (1961).
- 20. M.B. Hesse, *Forces and Fields. The Concept of Action at a Distance in the History of Physics*, T. Nelson and Sons, 1961.
- 21. I.M. Mills, and J.L. Duncan, J. Mol. Spectrosc., 9, 244 (1962).
- 22. H.C. Allen, and P.C. Cross. Molecular Vib-rotors, J. Wiley, 1963.
- 23. R.C. Lord, and I. Nakagawa, J. Chem. Phys., 39, 2951 (1963).
- 24. R.G. Schneider, and Scbachtschneider, Spectrochim. Acta, 19, 117 (1963).
- 25. H.C. Allen, and P.C. Cross, Molecular Vib-rotors, J. Wiley, 1963.
- 26. J.H. Wilkinson, *The Algebraic Eigenvalue Problem*, Oxford University Press. 1965, p. 266.
- 27. N. Neto, Gazz.. Chim. It., 96, 1094 (1966).
- 28. J.N. Gayles, W.T. King, and. J.H. Schachtschneider, *Spectrochim. Acta*, **23A**, 703 (1967).
- 29. P. Pulay, and W. Savodny, J. Mol. Spectrosc., 26, 150 (1968).
- 30. S. J. Cyvin, B.N. Cyvin, and G. Hagen, Z. Naturforschg., A23, 1649 (1968).
- 31. T. Oka, J. MoL Spectrosc., 29, 84 (1969).
- 32. W.H. Kirchhoff, J. Mol. Spectrosc., 41, 333 (1972).
- 33. A.R. Hoy, I.M. Mills, and G. Strey, Mol. Phys., 24, 1265 (1972).

5.2. Principles of the origin of group frequencies

Number of functional groups exhibit characteristic bands in IR and Raman spectra which can be characteristic by

- 1. frequency
- 2. frequency and intensity.

Origin of characteristic bands:

- Similar atoms (with identical masses) form groups in similar geometric arrangement.
- The transferability of force constants means identical force constant set for similar groups in different molecules. Part of G and F matrix for CH₃ and CH₂ groups:

		CH ₃	3	С	H_2			CH ₃		CH	\mathbf{I}_2
	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{q}_1	q_2		\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3	\mathbf{q}_1	\mathbf{q}_2
	q_2										
	a	b	b				f _r	f _{rr}	f _{rr}		
	b	a	b				f _{rr}	f _r	f _{rr}		
G	b	b	a			F –	f _{rr}	f _{rr}	$\mathbf{f}_{\mathbf{r}}$		
=				a	b	1 -				f_q	\mathbf{f}_{qq}
				b	a					f_{qq}	f_q

Bond lengths: ~1.09 Å Bond angles: ~109.47° (tetrahedral) After diagonalization of G and F matrices the calculated frequencies will be close to:

287

2929

The infrared spectra of some alkanes in the CH stretch region.

Factors influencing characteristic frequencies:

28732859

2929

2873

2960

2873

2961

mass effects (isotope substitution, or changing e.g. Cl, Br, I • substituents)

2873

2928

2873

2959

- electron affinity of substituents (changing the force constant) •
- steric effects (ring strain, isomers, conformations, steric • hinderance, co planarity etc.)

2854

2926

2853

2930

- tautomeria (keto-enol)
- external conditions
 - state (solid, liquid, gas)
 - ♦ temperature
 - crystal modification
 - solvent effect
 - ♦ concentration
 - association (H-bonding, adsorption, cage effect, matrix effect)

Characteristic X-H stretching frequencies

The hydrogen stretching vibrations are mechanically independent of the rest of the molecule and tend to make good group frequencies. (See Table below).

1.) Reduced	mass	changing	very	little
μ(BH) =	= 0.9087	μ(IH)	=	1.008
(1.008 is the	atomic weig	ght of H)		

2.) Therefore the most of the shift is caused by changes in the X-H force constants from F(AlH)=1.9 till F(HF)=8.8 Ncm⁻¹.

Approxymate X-H stretching	frequencies (cm ⁻¹) and force
constants (mdynes/Å)	

BH	CH	NH	OH	FH
2500	3000	3400	3600	3960 cm ⁻¹
3.4	4.9	6.4	7.2	8.8 mdynes/Å
AlH	SiH	PH	SH	ClH
1820	2150	2350	2570	2890
1.9	2.6	3.2	3.8	4.8
	GeH	AsH	SeH	BrH
	2070	2150	2300	2560
	2.5	2.7	3.1	3.8
	SnH	SbH		IH
	1850	1890		2230
	2.0	2.1		2.9

- 3.) Force constants increase as the electronegativity of X increases.
- 4.) Change in hybridisation (changing the special arrangement of electrons).

5.) Hydrogen bonding (NH, OH, FH)

5.3. Group frequencies of organic molecules

Spectra-structure correlations are similar in IR and Raman spectra. The band intensities are different:

- 1.) Center of inversion (alternatively)
- 2.) C=O, OH groups are strong in IR
- 3.) S-H, N-H, N=O are strong in Raman

By comparing the infrared spectra of two substances thought to be identical, you can establish whether they are, in fact, identical. In case if their infrared spectra coincide peak for peak (absorption for absorption), in most cases the two substances will be identical. A second and more important use of the infrared spectrum is to determine structural information about the molecule. The absorption of each type of bond (N–H, C–H, O–H, C–X, C=O, C–O, C–C, C=C, C=C, C=N, and so on) are regularly found only in certain small portion of the vibrational infrared region. A small range of absorption can be defined for each type of bond. See Characteristic stretching frequencies in the next Table.

5.3.1. Hydrocarbons

Hydrocarbons contain only C–H, C–C (C=C, C=C) bonds but there is plenty of information to be obtained from the IR and Raman spectra

Characteristic group frequencies of some stretching modes

Aliphatic hydrocarbons

They contain: $-CH_3(C_{3v})$ $>CH_2(C_{2v})$ $\Rightarrow CH(C_{3v})$

Methyl groups

Internal coordinates

Linear combination of internal	Absorption region (cm ⁻¹)
coordinates	$-CH_2-CH_3$
$v_a(CH_3) = 2r_1 - r_2 - r_3$	2985(25)
$v_a'(CH_3) = r_2 - r_3$	2970(30)
$v_{s}(CH_{3}) = r_{1} + r_{2} + r_{3}$	2905(65)
$\delta_a(CH_3) = 2\alpha_1 - \alpha_2 - \alpha_3$	1465(20)
$\delta_a'(CH_3) = \alpha_2 - \alpha_3$	1445(25)
$\delta_{s}(CH_{3}) = \alpha_{1} + \alpha_{2} + \alpha_{3} - \beta_{1} - \beta_{2} - \beta_{3}$	1380(20)
$\rho(CH_3) = 2\beta_1 - \beta_2 - \beta_3$	1100(95)
$\rho'(CH_3) = \beta_2 - \beta_3$	1080(80)
$\tau(CH_3) = \chi$ (coordinates)	230(105)

Methyl groups

 $\begin{array}{l} \nu_{a}(CH_{3}) > \nu_{s}(CH_{3}) > \delta_{a}(CH_{3}) > \delta_{s}(CH_{3}) > \rho(CH_{3}) > \nu(CCl) \\ \sim 2960 \quad \sim 2870 \quad \sim 1460 \quad \sim 1380 \quad \sim 1000 \quad \sim 700 \ cm^{-1} \\ Characteristic (strong) \ bands \end{array}$

Special features of CH stretching:

- 1.) $v_a(CH_3)$ as a double degenerate mode can be splitted.
- 2.) Separation between v_a and v_s is about 100 cm⁻¹ (without Fermi resonance).

IR spectra in the CH stretching region

- a.) Bands above 3000 cm^{-1}
- b.) Splitting of $v_a(CH_3)$ (~2970, 2940 cm⁻¹, is weak)
- c.) Fermi resonance, 2x1448 cm-1
- d.) Sharp isolated band at 2838 cm⁻¹ (methoxy) and 2815 cm⁻¹ (N-methyl aniline)

CH₃ deformation vibrations

CH₃ deformation bands of alkanes

X-sensitive vibrations of X-CH₃ groups

Symmetrical CH₃ deformation frequencies (cm⁻¹) (± 20 cm⁻¹)

BCH ₃	CCH ₃	NCH ₃	OCH ₃	FCH ₃
1310	1380	1410	1445	1475
	SiCH ₃	PCH ₃	SCH ₃	ClCH ₃
	1265	1295	1310	1355
	GeCH ₃	AsCH ₃	SeCH ₃	BrCH ₃
	1235	1250	1282	1305
	SnCH ₃	SbCH ₃		ICH ₃
	1190	1200		1252
	PbCH ₃			
	1165			

Effects: - electronegativity - mass

CH3 rocking	vidrations (aegen	erale)
$>_{Si-CH_3}$	$855 - 765 \text{ cm}^{-1}$	(1.90) (electronegativities)
\geq_{P-CH_3}	$960 - 860 \text{ cm}^{-1}$	(2.19)
$-S-CH_3$	$1030 - 950 \text{ cm}^{-1}$	(2.58)
F–CH ₃	1182 cm ⁻¹	(3.98)
Cl–CH ₃	1017 cm ⁻¹	(3.16)
Br–CH ₃	955 cm ⁻¹	(2.96)
I–CH ₃	882 cm ⁻¹	(2.66)

(H. rocking wibrations (degenerate)

Electronegativity / mass effect

Mixing with C–C stretching vibrations

Methylene group vibrations

Internal coordinates

Linear combination of internal coordinates	Absorption region (cm ⁻¹) -CH ₂ -CH ₂ -CH ₃
$\nu_a(CH_2) = r_1 - r_2$	2935(35)
$v_s(CH_2) = r_1 + r_2$	2865(25)
δ (CH ₂) = 2 α - β_{13} - β_{14} - β_{23} - β_{24}	1460(20)
$\omega(CH_2) = \beta_{13} - \beta_{14} - \beta_{23} + \beta_{24}$	1335(30)
$t(CH_2) = \beta_{13} - \beta_{14} + \beta_{23} - \beta_{24}$	1245(45)
$\rho(CH_2) = \beta_{13} + \beta_{14} - \beta_{23} - \beta_{24}$	780(55)

Asymmetric stretch, $v_a(CH_2)$: 2925 ± 10 Symmetric stretch, $v_s(CH_2)$: 2855 ± 10 Both are in very characteristic positions.

	N-CH ₂ CH ₃	P-CH ₂ CH ₃	C-CH ₂ CH ₃	Si-CH ₂ CH ₃	X-CH ₂ CH ₃
v_a :	2940	2940	2968	2980	3010
v_s :	2850	2885	2887	2885	2945
$\frac{1}{2}(\nu_{a}+\nu_{s})$	2895	2913	2928	2918	2978

CH₂ deformation vibrations

Scissoring is very close to $\delta_a(CH_3)$ (1465 ± 20 cm ⁻¹)					
X*=	Ph	C=C	C≡C	C=O	S
δ (CH ₂)	1450	1435	1430	1410	1400
*X–CH ₂ Cl group.					

 CH_2 wag vibrations are spread over a region. These exhibit a special pattern for long CH_2 chains.

 CH_2 wag band progression sodium stearate (range $1350 - 1180 \text{ cm}^{-1}$)

Similarly to $\delta_s(CH_3)$ and $\rho(CH_3)$ the $\omega(CH_2)$ shows the same sensitivity to substituent electronegativity:

CH₂ rock vibrations have very characteristic weak, medium bands around 720 cm⁻¹. In crystalline state the CH₂ rock, ρ (CH₂), band splits.

Carbon hydrogen group

Linear combination of internal	Absorption region (cm ⁻¹)
coordinates	(творгоруг)
v(CH) = r	2930(20)
$\gamma(CH) = \beta_2 - \beta_3$	1325(25)
$\beta(CH) = 2\beta_1 - \beta_2 - \beta_3$	1285(45)

The >CH group exhibit bands at ~2900 and ~ 1330 cm⁻¹ as stretching and bending modes, respectively.

-0-СН	<i>ortho</i> -formates Acetals, <i>Sec</i> -peroxides	1350–1315 n	nedium	
-N-CH	Substituted amine			
но-сн	Sec-alcohol free	1410-1350	1300-1200	
	Sec-alcohol bonded	1440-1400	1350-1285	
-СНО	Aldehyde	2900-2800	2775-2695	1420-1370

Spectral Regions for the CH Group (in cm^{-1})

ALKANES

The spectrum is usually simple, with few peaks.

C-H Stretch occurs around 3000 cm⁻¹.

In alkanes (except strained ring compounds), sp^3 C—H absorption always occurs at frequencies less than 3000 cm⁻¹.

If a compound has vinylic, aromatic, acetylenic, or cyclopropyl hydrogens, the C—H absorption is greater than 3000 cm^{-1} . These compounds have sp^2 and sp hybridizations

- CH_2 Methylene groups have a characteristic bending absorption of approximately 1465 cm⁻¹.
- CH₃ Methyl groups have a characteristic bending absorption of approximately 1375 cm^{-1} .
- CH₂ The bending (rocking) motion associated with four or more CH₂ groups in an open chain occurs at about 720 cm^{-1} (called a long-chain band).
- C-C Stretch not interpretatively useful; many weak peaks.

ALKENES

Noncyclic olefins

- I. The CH stretchings are above 3000 cm^{-1} (sp²) in 3100–3000 cm⁻¹ region
- II. The C=C stretch: $1680-1630 \text{ cm}^{-1}$
 - a) IR-variable, Raman-strong
 - b) 1680–1665 cm⁻¹ trans-, tri- and tetra- subst.
 - c) 1660 1630 cm⁻¹ vinyl-, cis-, vinylidine.
- III. Out-of-plane CH deformation vibrations are very good group frequencies (1000–650 cm⁻¹)

General IR spectra expected for ethylenes with alkane substituents.

The C-H out-of-plane bending vibrations for substituted alkenes.

SPECTRAL REGIONS FOR THE ALKYL-SUBSTITUTED OLEFINS (IN cm⁻¹)

CH₂ WAGGING FREQUENCIES (IN cm⁻¹) $R-O-CO-CH=CH_2$ 961 $N \equiv C - CH = CH_2$ 960 $R-CH=CH_2$ 910 Cl-CH=CH₂ 894 R-CO-O-CH=CH₂ 870 R-CO-N-CH=CH₂ 840 R-O-CH=CH₂ 813 $N \equiv C \qquad C = CH_2$ N = C 985 $C = CH_2$ R-O-CO 939 $\sum_{Cl}^{N=C} C = CH_2$ 916 $R > C = CH_2$ 890 C=CH₂ 867 C=CH₂ 795 R = O $C = CH_2$ 711

Trans-CH WAGGING FREQUENCIES (IN cm⁻¹)

$(CH_3)_3Si-CH=CH_2$	1009	
$R-CH=CH_2$	990	
$R-O-CO-CH=CH_2$. 982	
$R-CO-N-CH=CH_2$	972	
$R-O-CH=CH_2$	960	
$R-CO-O-CH=CH_2$	950	
$Cl-CH=CH_2$	938	
R-O-CO-CH=CH-CO-O-R trans	976	
CH ₃ -CH=CH-CO-O-R trans	968	
R-CH=CH-R trans	964	
CH_3 - CH = CH - C = N trans	953	
CH ₃ -CH=CH-Cl trans	926	
$Cl-CH=CH-C\equiv N$ trans	920	
Cl-CH=CH-Cl trans	892	

External cyclic C=C

Increasing v(C=C) – increasing interaction with the C–C bonds

1687 cm⁻¹

1668 cm⁻¹

Internal cyclic C=C

It is similar to noncyclic *cis* counterpart (1660–1630 cm⁻¹). As the ring gets smaller, the C=C / C–C interaction decreases. This interaction is minimum at 90° (cyclobutane) (Stretch–stretch interaction term $G_{RR} = \mu_c \cdot \cos \phi$)

Effects of ring size and alkyl substitution (R=CH₃)

Triple bonds and accumulated double bonds

Bands expected for various triple bond and cumulated double bond stretching vibrations

$\equiv C - H$ stretch	3340-3267 cm ⁻¹	Strong
$C \equiv C$ stretch	2140-2100	Weak ¹ in hydrocarbons
Overtone CH wag	1375-1225	Weak-broad
$\equiv C - H$ wag	700-610	Strong-broad

Group Frequencies for the $C \equiv CH$ Group

THE 2300-1900 cm⁻¹ REGION

−С≡С−Н	2140-2100 cm ⁻¹	Weak-variable	
-C≡C-	2260-2190	Very weak-variable	
$C = C = CH_2$	2000-1900	Strong	
$CH_2 - C \equiv N$	2260-2240	Medium weak	
C=C−C≡N	2235-2215	Medium	
aryl-C≡N	2240-2220	Variable	
$-C \equiv N \rightarrow O$	2304-2288	Strong	
-N=C=O	2275-2263	Very strong	
-S-C≡N	2170-2135	Medium strong	
-N=C=S	2150-2050	Very strong	
$>N-C\equiv N$	2225-2175	Strong	
-N=C=N-	2150-2100	Very strong	
>C=C=N-	2050-2000	Very strong	
-CH = N = N	2132-2012	Very strong	
N=N=N	2170-2080	Very strong	
aryl-N≡N	2309-2136	Medium	
-N≡C	2165-2110	Strong	
>C=C=O	2200-2100	Very strong	
[C≡N]-	2200-2070	Medium	
$[Fe(C \equiv N)_6]^{4-}$	2010	Medium	
$[Fe(C \equiv N)_6]^{3-1}$	2100	Medium	
$[N=C=0]^{-}$	2220-2130	Strong	
$[N=C=S]^{-}$	2090-2020	Strong	
metal(CO)	2170-1900	Strong	

Summary of the CH stretching of different hydrocarbons.

Stretching Vibrations for Various sp³-Hybridized C—H Bonds

		Stretching Vibration (cm^{-1})	
Group		Asymmetric	Symmetric
Methyl	CH ₃ —	2962	2872
Methylene		2926	2853
Methine	C H	2890	Very weak