

5.3.2 Benzene and its derivatives

Normal modes of benzene (30 vibrations)

Normal vibrations of benzene and substituted benzenes

1	Benzene		X	substituted	benzenes	
	D _{6h}	$C_{2\nu}$ C_s	a1 a'	a2 a″	b ₁ a''	b ₂ a'
νCH νPh	2, 7, 13, 20 1, 8, 14, 19	VCH, VCX	2, 7a, 13, 20a 1, 8a, 19a		7	7b, 20b 8b, 14, 19b
δPh	3, 9, 15, 18 6, 12	OCH, OCX	9a, 18a 6a, 12			3, 90, 15, 180 6b
γCH	5, 10, 11, 17	γ CH, γ CX		10a, 17a	5, 10b, 11, 17b	
γPh	4, 16			16a	4, 16b	

Absorption regions (cm⁻¹) of the normal vibrations of monosubstituted benzenes

Vibration		Wilson	Mono light	Mono heavy
νCH	CH stretching vibration	20a	3085 ± 20	3085 ± 20
νCH	CH stretching vibration	20b	3070 ± 20	3075 ± 15
νCH	CH stretching vibration	2	3060 ± 20	3055 ± 15
νCH	CH stretching vibration	13.4	3040 ± 20	3040 ± 20
νCH	CH stretching vibration	7b	3020 ± 20	3020 ± 20
uPh	Phenyl ring stretching vibration	8a	1605 ± 15	1590 ± 20
uPh	Phenyl ring stretching vibration	8b	1585 ± 15	1575 ± 15
vPh	Phenyl ring stretching vibration	19a	1485 ± 25	1475 ± 15
uPh	Phenyl ring stretching vibration	19b	1450 ± 20	1435 ± 15
u Ph	Phenyl ring stretching vibration	14	1335 ± 35	1310 ± 25
δCH	CH in-plane deformation	3	1295 ± 25	1275 ± 25
νcx	PhenylX stretching vibration	7a (X)	1195 ± 90	1090 ± 30
δсн	CH in-plane deformation	9a	1175 ± 20	1180 ± 15
δCH	CH in-plane deformation	9Ь	1150 ± 20	1165 ± 10
δCH	CH in-plane deformation	15	1070 ± 20	1065 ± 15
δCH	CH in-plane deformation	18a	1020 ± 20	1025 ± 10
ν Ph	Phenyl ring stretching vibration	1	1000 ± 10	1000 ± 05
γ CH	CH out-of-plane deformation	5	980 ± 20	980 ± 15
γ CH	CH out-of-plane deformation	17a	960 ± 25	965 ± 10
γ CH	CH out-of-plane deformation	17b	900 ± 35	915 ± 20
γ CH	CH out-of-plane deformation	10a	840 ± 25	835 ± 20
γсн	CH out-of-plane deformation	11	775 ± 45	745 ± 25
0Ph	Phenyl ring in-plane deformation	12 (X)	750 ± 80	700 ± 50
γ Ph	Phenyl ring out-of-plane deform.	4	695 ± 15	685 ± 15
0Ph	Phenyl ring in-plane deformation	6b	625 ± 15	605 ± 15
γ Ph	Phenyl ring out-of-plane deform.	16b (X)	510 ± 90	475 ± 55
oPh	Phenyl ring in-plane deformation	6a (X)	420 ± 115	355 ± 90
$\gamma_{\rm Ph}$	Phenyl ring out-of-plane deform.	16a	405 ± 25	405 ± 15
OCX	Phenyl X in-plane deformation	18b (X)	300 ± 110	250 ± 60
γcx	Phenyl X out-of-plane deform.	10b (X)	205 ± 70	170 ± 30

Mono light = benzenes substituted with a light atom (atomic mass < 25). Mono heavy = benzenes substituted with a heavy atom (atomic mass > 25). (X) = substituent-sensitive vibration.

The approximate normal modes of vibration of the monosubstituted benzene ring. These have frequencies in cm⁻¹ usually within 30 cm⁻¹ or better of the values given, except for the substituents sensitive modes which are collected in the bottom row.

Characteristic bands in 1610-1400 cm⁻¹ region v(CC) ring stretching: 1610-1400 cm⁻¹ (4 vibrations)

-1

Monosubstituted benzene	1604 + 3	1585 + 2	1610 1490	1452 + 4
a Disubstituted benzene	1607 ± 0	1203 - 3	1510 - 1460	1452 ± 4
m Disubstituted benzona	1007 ± 9 $1600 \rightarrow 1600$	1577 ± 4	1310 - 1400	1447 ± 10
-Disubstituted benzete	$1000 \rightarrow 1020$	1380 ± 3	$1495 \rightarrow 1470$	$1405 \rightarrow 1430$
p-Disubstituted benzene	1000 = 0	1579 ± 6	$1520 \rightarrow 1480$	1409 ± 8
benzenes	1010 ± 8	1577 ± 8	1510 ± 8	1456 ± 1

274

The general appearance of monosubstituted benzenes and ortho, meta, and para disubstituted benzenes in the infrared spectra. Some intensity variations and some frequency shifts may be expected with different substituents.

Characteristic bands in 900-700 cm⁻¹ region

a. γ(CH) out-of-plane deformations
Mono: 11, (750 vs); 10a ,(835); 17b, (900); 17a, (960) 5, (985)

The out-of-plane CH wag modes of substituted benzenes. Plus and minus stand for out-of-plane hydrogen displacement. Standing wave patterns are indicated by enclosing adjacent hydrogens which are wagging in-phase within an antinodal region (dotted region). Frequencies in cm⁻¹ are usually within 30 cm⁻¹ those given.

Substituent	γ(CH)	Substituent	γ(CH)
-CF ₃	770	-COO	805
-CH ₂ Cl	765	-NO ₂	793
-CR ₃	763	-CH=CH ₂	775
-CHR ₂	759	-CO-Cl	772
-CN, C≡C	758	-CO-R	761
-F	753	-NH ₂	752
-CH ₂ R	743	-OH	751
-Cl	741	-SO ₂ X	750
-Br	737	-СО-Н	748
-I	729	$-NH_3^+$	742
-CH ₃	728	-SH ₂	737

Five adjacent CH out-of-plane deformation bands in cm⁻¹

γ (CCC) vibrations (4)

Strong bands for

The bands obtained in the 900-700 cm⁻¹ region in the infrared spectra of some benzene ring derivatives. The X substitutes are indicated on each spectrum. In the disubstituted compounds both X substituents are the same.

Absorbance

279

Summation of bands in 1650-2000 cm⁻¹ region

The out-of-plane aromatic CH bending vibrations, γ (CH), in the 1000-700 cm⁻¹ region give rise relatively prominent summation bands.

These band pattern can be used to help determining the ring substitution.

Note: in C=O substituted benzenes, however, these bands are disturbed

Characteristic patterns of summation bands for various substituted benzene rings. The double letters (ee and others) are the binary combinations of modes seen in Fig. on page 275.

Compound	Fre	equencies (ci	m ⁻¹)
Compound _	6a	18b	16b
$Al(C_6H_6)_3$	420	207	323
$Ga(C_6H_6)_3$	315	180	245
$In(C_6H_6)_3$	270	180	195
$Si(C_6H_5)_4$	435	185	261
$Ge(C_6H_5)_4$	323	168	232
$Sn(C_6H_5)_4$	268	152	225
$Pb(C_6H_5)_4$	223	147	181

Strong band in Raman spectrum

The v_1 breathing mode is very strong in the Raman spectra near 1000 cm⁻¹. Important marker for phenylalanine in biological samples.

IR and Raman spectrum of liquid benzene

FT-Raman spectrum of human nail.

Condensed ring aromatics

The classification of substituents is given in terms of adjacent hydrogens. The characteristic γ (CH) bands are in the 900-700 cm⁻¹ region.

CHARACTERISTIC BANDS FOR SUBSTITUTED NAPHTHALENES (IN cm⁻¹)

Hydrogen pattern on one side	Isolated H	2 Adjacent H	3 Adjacent H	4 Adjacent H
1234	i ani penerima Li	all data di fatari	1 (horithe the the t	(800–761 s (770–726 s-vs
123			(820–776 s (774–730 s	
124	894-835 m-s	847-805 vs		
12		835-799 s		
23		834-812 s-vs		
13	(875–843 s (905–867 m-s			
14	889-870 s			
1 or 2	896-858 m			

In the 3 and 4 adjacent hydrogen regions two bands are seen.

Pyridines

IR spectrum is very similar to monosubstituted benzenes (light substituent)

Pyridine Ring Stretching Frequencies¹ (in cm⁻¹)

2-Substituted pyridine 3-Substituted pyridine 4-Substituted pyridine Polysubstituted pyridine	$\begin{array}{c} 1615 \rightarrow 1585 \\ 1595 \pm 5 \\ 1603 \pm 5 \\ 1610 - 1597 \end{array}$	$\begin{array}{c} 1572 \pm 4 \\ 1577 \pm 5 \\ 1561 \pm 8 \\ 1588 - 1564 \end{array}$	$\begin{array}{c} 1471 \pm 6 \\ 1485 \rightarrow 1465 \\ 1520 \rightarrow 1480 \\ 1555 - 1490 \end{array}$	$\begin{array}{c} 1433 \pm 5 \\ 1421 \pm 4 \\ 1415 \pm 4 \end{array}$
2-Substituted pyridine N-oxides 3-Substituted pyridine N-oxides 4-Substituted pyridine N-oxides	$1640 \rightarrow 1600$ 1605 ± 4 $1645 \rightarrow 1610$	$\begin{array}{c} 1567\pm10\\ 1563\pm3\\\end{array}$	$1540 \rightarrow 1480$ 1480 ± 6 1483 ± 6	$\begin{array}{c} 1435 \pm 10 \\ 1434 \pm 5 \\ 1443 \pm 7 \end{array}$

OUT-OF-PLANE	VIBRATIONS ¹	(IN	cm	-1))
--------------	-------------------------	-----	----	-----	---

2-Substituted pyridine 3-Substituted pyridine 4-Substituted pyridine	780–740 4 adjacent H wag 820–770 3 adjacent H wag 850–790 2 adjacent H	730-690 ring bend
2-Substituted pyridine N-oxides 3-Substituted pyridine N-oxides 4-Substituted pyridine N-oxides	790–750 4 adjacent H 820–760 3 adjacent H wag 855–820 2 adjacent H	680-660 ring bend

5.3.3. Oxygen containing compounds Ethers

When an oxygen atom is substituted for a carbon atom is a n-aliphatic chain skeletal stretching mode of C-O-C is observed (cs. 1150-800 cm⁻¹).

Characteristic vibrations C-O-C group:

C-O-C asym stretch in ethers:

R-O-R	Ar-O-R	CH ₂ =CH-O-R	R—CH–CH–R
Dialkyl	Aryl	Vinyl	Epoxides
1140-1085 cm ⁻¹ , vs	1310-1210, vs	1225-1200 cm ⁻¹ , s	1280-1230 cm ⁻¹ , m, s
	1050-1010, vs		950-815 cm ⁻¹ , vs

Aliphatic ethers:

The $-CH_2$ -O-CH₂- group gives risen to a strong band at 1140-1085 cm⁻¹. Other characteristic features (cm⁻¹).

cm ⁻¹	Assignment
2940 s	$v_a (CH_2)$
2875 w	$v_{s}(CH_{2})$
1475 s	$\delta(CH_2)$
1350 w	$\omega(CH_2)$
1285 w	$\tau(CH_2)$
1120 vs	$v_a(COC)$

 \cap

850 w	$v_{s}(COC)$
805 w	ρ(CH2)
395 w	δ(COC)

For R-O-CH₃ groups the frequency shift in δ_s (CH₃) which shifts from 1375 cm⁻¹ to about 1450 cm⁻¹, due to electro negativity of the oxygen.

The infrared spectrum of dibuthyl ether (neat liquid, KBr plates)

The infrared spectrum of anisole (neat liquid, KBr plates)

Aromatic ethers

The methoxy group in Ph-O-CH₃ usually gives rise to a sharp isolated band near 2850 cm⁻¹.

Anisole has two "ether" bands at 1250 and at 1049 cm⁻¹. Diphenyl ether (Ph-O-Ph) does not have 1049 cm⁻¹ band, only the 1250 cm⁻¹ band.

The aromatic carbon-oxygen bond has a higher force constant than the aliphatic carbon-oxygen bond due to resonance, which is one of the reasons for the higher vibrational frequency.

The ring C-O vibration interacts with the other ring frequencies (X-sensitive modes).

Cyclic ether linkages

			$\langle \rangle$	
	Pentamethylene	Tetramethylene	Trimethylene	Ethylene
	oxide	oxide	oxide	oxide
$v_a cm^{-1}$	1048	1071	983	892
$v_{s}^{*} cm^{-1}$	813	913	1028	1270
$v_a^* = v_a(C-O-C),$ $v_s^* = v_s(C-O-C),$				

The CH and CH₂ groups in the rings absorb either at 3050-3029 or 3004-2990 cm⁻¹ or in a few cases in both regions.

FTIR spectra of liquid (film) samples

Vinyl ethers

The asymmetric C-O-C stretch of alkyl vinyl ethers gives rise to a strong band at 1225-1200 cm⁻¹, very near 1203 cm⁻¹ in most cases. The vinyl carbon-oxygen bond is stiffened by resonance.

Spectral regions for alkyl vinyl ethers (cm⁻¹)

vinyl CH stretch	3125-3098, 3078-3060, 3050-3000
C=C gauche	1660-1635
C=C cis	1620-1610
=CH rock	1323-1320
C-O-C asym stretch	1225-1200
<i>trans</i> =CH wag	970-960
=CH ₂ wag	820-810
C-O-C sym stretch	870-820

Alcohols and Phenols

Internal coordinates

 $H_2CQCH_2RO^{\gamma}CH_2C^{\gamma}CH_2RO^{\gamma}H$

Linear combination of internal	Approximate frequencies
coordinates	(cm^{-1})
v(OH) = r	3300(120) vs, (H-bonded)
δ (COH) = A	1400(35) w
$v_a(CCO) = R - Q$	1065(25) s
γ(OH)	450(200) w

-CH₂-CH₂-OH group has the following strong characteristic bands:

OH str	3300 (120) vs, b (H-bonded)
CH ₂ asym str.	2950 (30) vs
CH ₂ sym str	2885 (45) s
CH ₂ scis	1450 (23) s
COH deform	1400 (35) w
C-C-O asym str	1065 (25) s

Effect of hydrogen bonding on the OH stretching vibration of isopropanol. (A) Shows the effect of changing the isopropanol concentration in CC₄ (M =molar) and compensating for dilution by increasing the cell thickness (given in mm). The number of isopropanol molecules in the spectrometer beam remains constant. The background level is adjusted to prevent overlap. (B) Shows the effect of changing the solvent (benzene, tetrahydrofuran, pyridine, and triethylamime) while 1 eaving the isopropanol concentration: (0.05 M) and the cell thickness (1 mm) unchanged.

Infrared spectrum of isopropanol solutions in CCl₄In liquid and solid state: dimmers, polymers

OH stretching in phenols

Intramolecular hydrogen bonding

Hydroxyacetophenones are shown in CCl₄ solution in a 4-mm cell. In the *para* isomer the free OH stretch in dilute solution gives rise to a sharp band at 3600 cm⁻¹ which is much shifted from the intermolecular bonded OH^{...}O stretch broad band in the solid state at 3130 cm⁻¹ (not shown). In the *ortho* isomer the internally bonded OH^{...}O group gives rise to a broad band centring at 3040 cm⁻¹ with superimposed CH stretch bands and combination bands intensified by Fermi resonance. The OH^{...}O group remains internally bonded even in dilute solution (shown here in two concentrations) in marked contrast to that for the *para* isomer.

C-O stretch

The vibrations involving the stretching of the C-O bond give rise to strong infrared bands

Primary alcohols CH ₂ -OH	1075-1000
Aliphatic secondary alcohols (alkyl-CHOH-alkyl)	1150-1075
Aromatic secondary alcohols (phenyl-CHOH-)	1075-1000
Cyclic equatorial secondary alcohols	1065-1037
Cyclic axial secondary alcohols	1036- 970
Tertiary alcohols	1210-1100
Phenols	1260-1180

C-O SPECTRAL REGIONS (IN cm⁻¹)

In primary alcohols, this band involves asymmetric C-C-O stretching.

CARBONYL COMPOUNDS

The π -electrons of carbonyl groups due to different electro negativity of carbon and oxygen strongly polarized.

The bonded atoms or groups exhibit strong influence on bond polarity:

- increasing polarity $(-NH_2) \rightarrow$ decreasing frequency
- decreasing polarity $(-Cl) \rightarrow$ increasing frequency

The C=O stretching band very strong in the IR spectra generally observed in the $1900 - 1550 \text{ cm}^{-1}$ region. Factors influencing band position:

b.) Bond angle effect

Saturated ketones: $v (CO) = 1278 + 68F - 2.2\phi$ F - C=O force constant (Ncm⁻¹), (F = 10.2 Ncm⁻¹ for unconjugated ketones) ϕ - CCC angle in degrees

Cyclic ketones:

1815 cm⁻¹

1715 cm⁻¹ (normal)

c.) Inductive effect

The tendency of the carbonyl oxygen to attract electrons

results in a weakening of the C=O force constant and a lowering of the C=O frequency. Electron attracting groups attached to the carbon atom compete with the oxygen for electrons, resulting in less contribution from the polar form and a higher frequency. As an

example of this, ketones absorb near 1715 cm⁻¹ whereas acid chlorides absorb near 1800 cm⁻¹.

d.) Mesomeric effect

In the mesmeric effect, the **heteroatom** attached to the C=O group donates a non-bonding electron, and the C=O oxygen attracts an electron which weakens the C=O force constant and lowers the frequency.

$$O = C - Cl \quad \longleftrightarrow \stackrel{-}{O} - C = \stackrel{+}{Cl} \qquad 1800 \text{ cm}^{-1}$$
$$O = C - O - R \quad \stackrel{-}{\longleftrightarrow} \stackrel{-}{O} - C = \stackrel{+}{O} - R \qquad 1740 \text{ cm}^{-1}$$
$$O = C - NH_2 \quad \longleftrightarrow \stackrel{-}{O} - C = \stackrel{+}{NH_2} \qquad 1660 \text{ cm}^{-1}$$

Conjugation of carbonyls with double bonds or aromatic rings usually results in a band shift to lower wavenumbers of about 20-30 cm⁻¹, due again to a redistribution of electrons which weakens the C=O bond.

$$0 = C - C = C \longleftrightarrow 0 - C = C - C$$

Steric effects may remove the co planarity of the conjugated system and thus reduce the effect of conjugation.

Hydrogen bonding affects carbonyl frequencies, but the largest effects occur when hydrogen bonding is combined with mesomeric effects. When a carbonyl is hydrogen bonded and resonance can

occur which puts a partial negative charge on the oxygen atom accepting the hydrogen bond and a partial positive charge on the OH group, the partial bonding of the hydrogen to two atoms enhances resonance and electron delocalization,

and lowers the C=O frequency. This effect can be seen in o-hydroxy acetophenones, the enol form of acetylacetone types, carboxylic acid dimers, etc.

ALDEHYDES

Internal coordinates

Linear combination of internal	Approximate frequencies for	
coordinates	saturated aldehydes (cm ⁻¹)	
v(CH) = r	~ 2840	
v(C=O) = R	~ 1755	
$\beta(CH) = \alpha - \beta$ (def)	~ 1375	
$\gamma(CH) = \frac{\rho(CCOH)}{(wag)}$	~ 865	
$\delta(\text{CCO}) = \gamma$	~ 565	

Aldehydes are the first representatives of carbonyl containing molecules.

- 1.) C=O groups can be obtained in a great number of organic molecules.
- 2.) All C=O stretching modes exhibit very strong bands in the IR spectrum.
- 3.) The spectral range 1750±200 cm⁻¹ is ideal for observation, there are no very strong absorption of other functional groups in this spectral range.

Characteristic vibrations of formyl group (cm ²)			
	Saturated	Unsaturated	Aromatic
CH str (s)	2840 (30)	2830 (30)	2850 (45)
2xCH def(s)	2720 (20)	2720 (20)	2755 (35)
C=O str (vs)	1755 (35)	1685 (35)	1690 (30)
CH def(w)	1375 (25)	1380 (25)	1380 (25)
CH wag (vw)	865 (125)	860 (150)	865 (145)
C–C=O def (vw)	565 (100)	640 (100)	645 (55)

Characteristic vibrations of formyl group (cm⁻¹)

C=O stretch at approximately 1755 cm⁻¹ is common. Conjugation moves the absorption to lower frequency, close to 1700 cm-1.

CH stretch, aldehyde hydrogen (–CHO) consist of medium / strong bands at about 2840 and 2750 cm⁻¹. Note that the CH stretch in alkyl chains does not usually extend to frequencies as low as 2750 cm^{-1} .

The infrared spectrum of nonanal (neat liquid, KBr plates)

The infrared spectrum of crotonaldehyde (neat liquid, KBr plates)

The infrared spectrum of benzaldehyde (neat liquid, KBr plates)

Aldehyde CH Vibration

In most aldehydes with alkyl groups or aromatic ring next to the carbonyl, the aldehyde CH give rise to two bands at 2900–2800 and 2775–2695 cm⁻¹ and to a band at 1410–1380 cm⁻¹. The 1390 cm⁻¹ band is assigned to the in plane hydrogen rocking vibrations.

Aliphatic aldehydes have bands at 2840(30) and 2720(20) cm⁻¹. Some *ortho*-substituted benzaldehydes with substituents such as halogen, nitro or metoxy absorb at 2880(20) and 2760(10) cm⁻¹, these regions differing somewhat from all other benzaldehydes due to possibly to a steric effect.

The two bands in the CH stretch region where only one fundamental is expected is most satisfactorily explained as an interaction of the CH stretch fundamental with the overtone of the CH bending vibration near 1390 cm⁻¹. This must involve Fermi resonance of the overtone with the fundamental, which means that both bands near 2830 and 2740 cm⁻¹ involve aldehyde CH stretch and both bands involve the overtone of the 1390 cm⁻¹ CH deformation.

Aldehyde Carbonyl Vibration

The most intense band in the aldehyde spectrum is usually due to the carbonyl stretching vibration. Most aliphatic aldehydes absorb strongly at 1755(30) cm⁻¹. Most aromatic aldehydes absorb at 1690(30) cm⁻¹. Salicyl-aldehyde absorbs at 1666 cm⁻¹ due to conjugated internal hydrogen bonding as in the *ortho*-hydroxyphenones. As with other carbonyl compounds conjugation lowers the frequency. The chloro acetaldehydes in CCl4 absorbes as follows:

No doubling is observed as in the ketones.

CARBOXYLIC ACIDS, ANHYDRIDES, ESTERS

Internal coordinates

C—	$\frac{\mathbf{R}}{\mathbf{Q}}$
	$O \longrightarrow H \longrightarrow O$

 ρ (oop of C(C=O)C) τ (C-C-O-H) torsion

Linear combination of internal	Absorption region (cm ⁻¹)	
coordinates	$R-C_{OH}^{O}$ (R=aliphatic)	
v(OHO) = r	3050(50)	
v(C=O) = R	1735(50)	
$\delta(OHO) = \epsilon$	1395(55)	
v(C-O) = q	1245(75)	
$\gamma(OHO) = \tau$	905(75)	
$\delta(\text{OCO}) = 2\beta - \alpha - \gamma$	705(75)	
$\gamma(C=O) = \rho(oop)$	580(100)	
$\delta(\text{COO}) = 2\alpha - \beta - \gamma$	465(80)	

General characterisation of -C(=O)OH group.

- O–H Stretch, usually very broad (strong H–bonded), occurs at 3050(50) cm⁻¹ and often overlaps the C–H absorptions.
- C=O Stretch, usually occurs at 1735(50) cm⁻¹. Conjugation moves the absorption to a lower frequency.
- C–O Stretch occurs at 1245(75) cm⁻¹, medium intensity.
- OH...O Out of plain deformation at 905(65) cm⁻¹.

	(in dimeric form)	
	Aliphatic	Aromatic
v(OH…O)	^a 3050 (50) s, vb	2950 (50) m, b
v(C=O)	1735(50) vs	1680 (20) vs
δ(OH O) (i.p.)	1395(55) w	1415(25) w*
v(C–O)	1245(75) m, s	1300 (30) s, m
γ(OH O) (o.o.p.)	905 (65) m, b	900 (50) m
δ(C=O)	705(75) vw	770(50) vw*
γ(C=O)	580(100) w, m	660(55) w*
ρ(COO)	465(80) w	530(35) w

The -C(=O)OH group has the following IR vibration (cm⁻¹)

*Bands can be overlap with aromatic ring vibrations ^aWell defined characteristic bands are in bold.

Next figure shows typical IR spectrum of aliphatic (isobutiric) and aromatic (benzoic) acids.

The infrared spectrum of isobutyric acid (neat liquid, KBr plates).

The infrared spectrum of benzoic acid (neat liquid, KBr plates).

Monomer acids

Measurement: a) in vapour state (at ~150°C) b) in diluted nonpolar solvent (CCl₄) solution

The "free"OH stretching vibration absorbs sharply and weakly $at \sim 3520(30) \text{ cm}^{-1}$.

Spectral Regions of Monomer Carbonyls (in cm ⁻¹)		
OH stretch	3520(30) w, sharp	
C=O stretch	1770(30) vs	
C–OH deformation (i.p.)	1230(50) m	
C–O stretch	1130(60) s	
C–OH deformation (o.o.p)	820(30) m, b	

Dimeric acids

Carboxylic acids with no other polar groups in the molecule usually exist predominantly as the hydrogen bonded dimmer, even in CCl₄ solution although some acids exist at least partially in the hydrogen-bonded polymeric form.

When dimer is considered:

- a) two carbonyl stretchings will be
- b) a center of symmetry (i) formed
- c) v_a(C=O) will be only IR and v_s(C=O) will be only Raman active.

Cl₃C-COOH dimer

IR band: 1742 cm^{-1} Raman band: 1687 cm^{-1} Characteristic combination bands:

between 2700 and 2500 cm⁻¹ due to overtones 1420 \rightarrow 2840 cm⁻¹ \rightarrow 2x δ (OH···O) overtones 1300 \rightarrow 2600 cm⁻¹ \rightarrow 2x v(C–O) combination 1420+1300 \rightarrow 2720 cm⁻¹ \rightarrow δ (OH···O) + v(C–O)

The C=O stretch depends on the state of the sample and solvent polarity

Dimer associates in a – and b – hydroxyl carboxylic acides:

 $v_{c=0} \sim 1745 \text{ cm}^{-1}$

 α -hydroxy hydrogen bond to carbonyl OH (ν (CO) moves upwards)

β-hydroxyl two H – bonds to carboxylic oxygen (ν(CO) is strongly shifted to lower cm⁻¹)

Carboxyl salts and complexes

When a salt is made from a carboxylic acid, the C=O and C-O are replaced by two equivalent carbon-oxygen bonds which are intermediate in force constant between the C=O and C-O.

v_s (CO₂) medium, week IR/ strong Raman 1400 (50) cm⁻¹

 $v_{a}(CO_{2})$ strong IR 1600 (50) cm⁻¹

HCOONa	CH ₃ COONa	Assignment
2841 w	-	v(CH)
1567 vs	1578 vs	$v_a(CO_2)$
1366 s,m	1411 s,m	$v_{s}(CO_{2})$
722 w	646 w	$\delta(CO_2)$
-	615 w	ω (CO ₂)
	460 w	ρ (CO ₂)

The carboxylate ion may coordinate to a metal in one of the following modes:

- (1) Unidentate complexes (structure I) exhibit Δ values $[\nu_a (CO_2^-) \nu_s(CO_2^-)]$ that are much greater than the ionic complexes.
- (2) Chelating (bidentate) complexes (structure II) exhibit Δ values that are significantly less than the ionic values.
- (3) The Δ values for bridging complexes (structure III) are greater than those of chelating (bidentate) complexes, and close to the ionic values.

Compound	v _a (COO) ^a	v _s (COO) ^a	Δ	Structure
HCOO ⁻	1567	1366	201	Ionic
CH ₃ COO ⁻ (OAc ⁻)	1578	1414	164	Ionic
Rh(OAc)(CO)(PPh ₃) ₂	1604	1376	228	Unidentate
Ru(OAc)(CO) ₂ (PPh ₃)	1613	1315	298	Unidentate
Si(OAc) ₄	1745 ^b	1290 ^b	455	Unidentate
Ge(OAc) ₄	1710 ^b	1280 ^b	430	Unidentate
RuCl(OAc)(CO)(PPh ₃) ₂	1507	1465	42	Bidentate
RuH(OAc)(PPh ₃) ₂	1526	1449	77	Bidentate
$Ph_2Sn(CH_3-COO)_2$	1610	1335	265	Asym. bidentate
$Ph_2Sn(CH_2CI-COO)_2$	1620	1240	380	Asym. bidentate
Ph ₂ Te(CCl ₃ -COO) ₂	1705	1270	435	Asym. bidentate
Rh ₂ (OAc) ₂ (CO) ₃ (PPh ₃)	1580	1440	140	Bridging
$[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{C}_2\operatorname{H}_5\operatorname{COO})]_n$	1548	1410	138	Bridging
[Cr ₃ O(OAc) ₆ (H ₂ O ₃)] ⁺	1621	1432	189	Bridging
$[Mn_2O_2(OAc)]^{2+}$	1548	1387	171	Bridging
[Pd(OAc) ₂ (PPh ₃)] ₂	1629	1314	315	Unidentate
	1580	1411	169	Bridging
CrO ₂ (OAc) ₂	1710	1240	470	Unidentate
	1610	1420	190	Bidentate
$Cp_2Zr[Cr(CO)_3(RCOO)]_2^c$	1641	1329	312	Unidentate
· · · · · · · · ·	1542	1377	165	Bidentate

Carboxyl Stretching Frequencies and Structures of Carboxylate Complexes (cm⁻¹)

^a These correspond to the v(C=O) (free) and v(C-O) (coordinated) of the unidenlate carboxylates, respectively. ^b IR frequency.

 $^{c}R = C_{6}H_{5}$.

Raman spectra of Si(OAc)₄ and Ge(OAc)₄ in the solid state (514.5 nm excitation) - (unidentate coordination)

ANHYDRIDES

Structure:

	$R \xrightarrow{O} O O O O O O O O O O O O O O O O O O $	O O Ph O Ph	$H_2C - C \\ H_2C - C \\ H_2C - C \\ O$	$HC - C \\ HC - C \\ HC - C \\ O$
	unconjugated	Conjugated	cyclic	cyclic conjugated
v _a (C=O)	~1820 vs	$\sim 1770 \text{ vs}$	1860 (15) s	~1850 s
v _s (C=O) v _a (C-O-C)	~1750 s 1080 (40) s,b	~1720 s ~1030 (20)s,b	1790 (10) vs ~920 s	~1770 vs ~900 s

The infrared spectrum of propionic anhydride (neat liquid, KBr plates).

C=O Stretch occurs in the range 1750-1735 cm⁻¹ in normal esters. Conjugation in R part moves the absorption to a lower frequency; conjugation with the O in the R' part moves the absorption to a higher frequency. Ring strain in cyclic esters (lactones) moves the absorption to a higher frequency.

C–O Strech in two or more bands, one stronger and broader than the other, occurs in the range 1300-1000 cm⁻¹.

Characteristic vibrations of ester groups

*Characteristic strong bands are bold

** when R' is not a long chain or Ph group

The infrared spectrum of ethyl butyrate (neat liquid, KBr plates).

The infrared spectrum of methyl methacrylate (neat liquid, KBr plates).

The infrared spectrum of methyl benzoate (neat liquid, KBr plates).

The effect of α , β unsaturation or aryl substitution and conjugation with oxygen on the C=O vibrations in noncyclic (acyclic) esters.

Cyclic esters (Lactones)

The C=O vibrations are shifted to higher frequencies with decreasing ring size, as predicted earlier. The unstrained, six-membered cyclic ester δ -valerolactone absorbs at about the same value as a noncyclic ester (1735 cm⁻¹). Because of increased angle strain, γ -butyrolactone absorbs at about 35 cm⁻¹ higher than δ -valerolactone.

The table presents some typical lactones together with their C=O streching absorption values. Inspection of these values reveals the influence of ring size, conjugation with a carbonyl group, and conjugation with the single-bond oxygen.

\alpha-Halo Effects. Halogenation on the α carbon leads to an increase in the C=O frequency.

Effects of Ring Size, α,β Unsaturation, and Conjugation with Oxygen on the C=O Vibrations in Lactones

β-Keto Esters. Although this class of compounds exhibits tautomerization like that observed in *β*-diketones (p. 60), less evidence exists for the enol form because *β*-keto esters do not enolize to as great an extent. *β*-Keto esters exhibit a *strong-intensity* doublet for the two carbonyl groups at about 1720 and 1740 cm⁻¹ in the "keto" tautomer, presumably for the ketone and ester C=O groups. Evidence for the *weak-intensity* C=O band in the "enol" tautomer (often a doublet) appears at about 1650 cm⁻¹. Because of the low concentration of the enol tautomer, one generally cannot observe the broad O-H stretch that was observed in *β*-diketones.

Keto tautomer

Enol tautomer

KETONES

Internal coordinates

Linear combination of internal	Absorption region (cm ⁻¹)	
coordinates	R–CO–CH ₃	(R=aliphatic)
ν (C=O) = R	173	35(45)
$va(CCC) = r_1 - r_2$	101	15(60)
$vs(CCC) = r_1 + r_2$	89	5(80)
$\delta(C=O) = \beta_1 - \beta_2$	55	5(70)
$\gamma(C=O) = \rho(oop)$	46	0(50)
$\delta(\text{CCC}) = 2\alpha - \beta_1 - \beta_2$	37	5(50)

- C=O Stretch at approximately 1715 cm⁻¹ is normal. Conjugation moves the absorption to a lower frequency. Ring strain moves the absorption to a higher frequency in a cyclic ketone.
- C–C–C Asymmetric C–C–C stretching appears as a medium or strong intensity band in the range 1300–1100 cm⁻¹. Symmetric C–C–C stretching exhibit very strong Raman line at 790 cm⁻¹.

Rotational isomers in α -chloro ketones.

The infrared spectrum of mesityl oxide (neat liquid, KBr plates).

The infrared spectrum of acetophenone (neat liquid, KBr plates).

Cyclyc Ketones

The infrared spectrum of cyclopentanone (neat liquid, KBr plates).

The C=O stretching vibrations in conjugated ketones.

The C=O stretching vibrations for cyclic ketones and ketene.

Keto-enol tutomeria

The infrared spectrum of 2,4-pentanedione (neat liquid, KBr plates).

Some general features for a selection of carbonyl compounds, which show some bands from the attached groups, are illustrated.

C=O Spectral Regions (in cm⁻¹)

Dialkyl ketones Singly conjugated ketones Doubly conjugated ketones α-Chloro ketone (Cl near O) (cyclic equatorial) α-Chloro ketone (Cl not near O) (cyclic axial) Ketone in five membered ring (unconjugated) <i>o</i> -Hydroxy aryl ketones 1, 3-Diketones, enol form	1725–1705 1700–1670 1680–1640 ca. 1745 ca. 1725 1750–1740 1670–1630 1640–1580	
Aliphatic aldehydes Aromatic aldehydes	1740–1720 1710–1685	
Formate esters Other saturated esters Conjugated esters (electron attracting groups on the oxygen raise the C=O frequency)	1725–1720 1750–1735 1735–1715	

5.3.4 NITROGEN CONTAINING COMPOUNDS

AMINES (C_s point group)

a) Primary amines

$\nu_a(NH_2)$:	$r_1 - r_2$		A"
$v_{s}(NH_{2})$:	$r_1 + r_2$	(p)	Α'
$\delta(NH_2)$:	$2\alpha - \beta_1 - \beta_2$	(p)	Α'
$\rho/\tau(NH_2)$:	$\beta_1 - \beta_2$		A''
$\omega(NH_2)$:	$\beta_1 + \beta_2$	(p)	Α'
v(NC):	Q	(p)	Α'

R–NH₂ absorption regions (cm⁻¹):

	$R = alkyl (cm^{-1})$	$R = aromatic (cm^{-1})$	N-bonded (cm ⁻¹)
$v_a(NH_2)$	3365(25) m, s	3410(70)	3350(40)
$v_{s}(NH_{2})$	3290(30) m, s	3320(70)	3250(70)
$\delta(\rm NH_2)$	1615(20) m	1620(20)	1620(20)
$\rho/\tau(NH_2)$	1195(90) w	1070(50)	1195(90)
$\omega(NH_2)$	840(55) s, b	620(100)	830(50)
$\nu(NC)$	1180(200) w	_ *	?

* Coupled with aromatic ring vibrations.

Relations:	(a) $v_{\rm s}(\rm NH_2) = 345.5 + 0.876 v_{\rm a}(\rm NH_2)$
	(b) $v_{\rm s}(\rm NH_2) = 0.98 v_{\rm a}(\rm NH_2)$

The infrared spectrum of butylamine (neat liquid, KBr plates).

The infrared spectrum of dibutylamine (neat liquid, KBr plates).

The infrared spectrum of tributylamine (neat liquid, KBr plates).

a) Secondary amines

	$R = CH_3 (cm^{-1})$	$R = Ph (cm^{-1})$
v(NH)	3265(50) m	3400(40)
δ(NH)	1530(50)	1530(50)
$v_a(NC_2)$	1150(30)	1140(15)
$v_{s}(NC_{2})$	995(80) w	985(70)

AMINES, C=N, AND N=O COMPOUNDS

NH₂ Stretch in Amines

In Fig. below general spectral features are shown for amines and other selected nitrogen compounds to be discussed in this chapter.

The NH₂ group gives rise to absorption at 3550–3330 cm⁻¹ (asymmetric stretch) and at 3450–3250 cm⁻¹ (symmetric stretch). A relationship has been developed relating the two bands,¹ namely, $\bar{\nu}_{sym} = 345.5 + 0.876 \bar{\nu}_{asym}$, this relationship holding for NH₂ groups in which the two NH bonds are equivalent. Using equations related to those for the triatomic case this relationship has been reduced to $\bar{\nu}_{sym} = 0.98 \bar{\nu}_{asym}$.

General spectra expected for amines, anilines, imines, and nitro compounds.

Absorbance

346

CYANIDES, ISONITRILES

Absorption region of the normal vibrations of R–C=N groups: Internal coordinates

Vibratiana	Coordinate	Region (cm ⁻¹)		
vibrations	involved	R = aliphatic	R = Ph	
v(C≡N)	Q	2250(20)	2230(10)	
v(C–CN)	R	955(65)	_	
$\gamma(C-C\equiv N)$	3	365(25)		
δ(C−C≡N)	ε'	225(65)		

Aliphatic nitriles

- The C≡N stretching band is weakened in intensity when:

- The CH₂ group has scissoring mode at 1425 cm⁻¹.
- Conjugations lower the C \equiv N frequency due to resonance

The infrared spectrum of butyronitrile (neat liquid, KBr plates).

Benzonitriles

– The intensity of C \equiv N stretching band is quite variable and depends on the nature of substituent

The infrared spectrum of benzonitrile (neat liquid, KBr plates).

ISOCYANIDES

 $R \longrightarrow N^{+} = \overline{C} \sim 2140 \text{ cm}^{-1}$ $Ph \longrightarrow N^{+} = \overline{C} \sim 2115 \text{ cm}^{-1}$

ISOCYANATES

The most characteristic group vibrations are:

Internal coordinates

Characteristic vibrations (R = aliphatic):

Vibrations	Coordinates	Region (cm ⁻¹)
$v_a(N=C=O)$	Q - P	2270(20) vs, broad
$v_{s}(N=C=O)$	Q + P	1420(20) m
v(C-N)	R	725(75) w
$\gamma(N=C=O)$	εc	600(30) m, broad
δ (N=C=O)	εc'	575(25) w
$\delta(C-N=C)$	ε _N	155(25) vw

The infrared spectrum of benzyl isocyanate (neat liquid, KBr plates).

Comparison (2300–1900 cm⁻¹)

– weaker IR, sharp

– strong Raman

X=YZ *cumulated double bond* – stronger IR, broader band (v_a) – weaker Raman

– Multiple bonds in this region due to FERMI RESONANCE!

The 2300–1900 cm⁻¹ Region

−С≡С−Н	2140–2100 cm ⁻¹	Weak-variable
-C≡C-	2260-2190	Very weak-variable
$C = C = CH_2$	2000-1900	Strong
$CH_2 - C \equiv N$	2260-2240	Medium weak
$C = C - C \equiv N$	2235-2215	Medium
aryl-C≡N	2240-2220	Variable
$-C \equiv N \rightarrow 0$	2304-2288	Strong
-N=C=0	2275-2263	Very strong
-S-C≡N	2170-2135	Medium strong
-N=C=S	2150-2050	Very strong
>N−C≡N	2225-2175	Strong
-N=C=N-	2150-2100	Very strong
>C=C=N-	2050-2000	Very strong
-CH = N = N	2132–2012	Very strong
-N = N = N	2170-2080	Very strong
aryl-N≡N	2309–2136	Medium
$-N \equiv C$	2165-2110	Strong
>C=C=0	22002100	Very strong
[C≡N] ⁻	2200-2070	Medium
$[Fe(C \equiv N)_6]^{4-}$	2010	Medium
$[Fe(C \equiv N)_6]^{3-1}$	2100	Medium
$[N=C=0]^{-}$	2220-2130	Strong
$[N=C=S]^{-}$	2090-2020	Strong
metal(CO)	2170-1900	Strong

.

Absorbance

352

ORGANIC NITRO COMPOUNDS

Internal coordinates:

Vibrations	Coordinate	Aliphatic (cm ⁻¹)	α -unsaturated, aromatic (cm ⁻¹)
$v_a(NO_2)$	$Q_1 - Q_2$	1570(20) vs	1535(30) s
$v_{s}(NO_{2})$	$Q_1 + Q_2$	1380(20) s	1345(30) s
$\delta(NO_2)$	$2\alpha-\beta_1-\beta_2$	700(70) w	850(60)*
$\omega(NO_2)$	Р	480(50) vw	545(45) w
<u>χ(NO₂)</u>	Х	$\sim 60 \text{ vvw}$	$\sim 70 \text{ vvw}$

* Overlapping with aromatic vibrations.

The infrared spectrum of 1-nitrohexane (neat liquid, KBr plates).

The infrared spectrum of nitrobenzene (neat liquid, KBr plates).

	Asymmetric stretch (cm ⁻¹)	Symmetric stretch (cm ⁻¹)
C-CH ₂ -NO ₂	1556–1545	1388–1368
$C-CH(CH_3)-NO_2$	1549–1545	1364-1357
$C(CH_3)_2 - NO_2$	1553-1530	1359-1342
$CHX - NO_2(X = Cl, Br)$	1580-1556	1368-1340
$CX_2 - NO_2$	1597-1569	1339-1323
CCl ₃ -NO ₂	1610	1307
$C(NO_2)_2$	1590-1570	1340-1325
N-NO ₂	1630–1530	1315-1260
$O-NO_2$	1660–1625	1285-1270
Nitro alkene	1550-1500	1360-1290
Aromatic nitro	1530-1500	1370-1330
<i>p</i> -Aminonitro aromatic	(Hydrogen bonded)	1330-1270
o-Aminonitro aromatic	(Hydrogen bonded)	1260-1210

NO_2 Stretching Frequencies

5.3.5. AMINO ACIDS, UREAS, CARBAMATES

Amino acids

Amino acids usually exist as zwitterions:

Characteristic groups: -NH₃⁺ and -COO⁻.

Absorption regions of the normal vibrations of -CH2-NH3 ⁺ grow	up:
---	-----

Vibrations	Spectral range (cm ⁻¹)	α -amino acids (cm ⁻¹)
$\nu_a(NH_3^+)$	3135(105) s	3100 – 2600 broad strong
$\nu_{a}'(NH_{3}^{+})$	3045(70) s	multiple peaks
		2200 – 2000 region
		medium combination bands
$\delta_a(\mathrm{NH_3}^+)$	1605(45) vs	1625(20) g
$\delta_a'(NH_3^+)$	1575(55) vs	1023(30) s
$\delta_{s}(NH_{3}^{+})$	1525(50) w, m	1510(20) s
$\rho(\mathrm{NH_3^+})$	1070(100) m	
$\rho'(NH_3^+)$	1030(100) m	
δ (CCN)	480(55) w	
torsion	175(65) vw	

Characteristic –COO⁻ bands

Vibrations	Spectral range (cm ⁻¹)	α -amino acids (cm ⁻¹)
v _a (COO ⁻)	1585(25) vs	1580(30) vs
$v_s(COO^-)$	1410(30) m, s	1410(40) m, s
ρ(COO [_])	530(60) m, s	530(100) s, m

* The scissoring and wagging modes of COO^- (735(90) and 625(55) cm⁻¹, respectively) are generally weak bands.

The infrared spectrum of leucine (Nujol mull, KBr plates). Dots indicate the Nujol (mineral oil) absorption bands.

Characteristic δ (CH) band at ~1300 cm⁻¹ observed as sharp, medium intensity feature.

AMIDES

Primary amide

Secondary amide

Tertiary amide

Primary amides

Adsorption regions of $-C(=O)NH_2$ group:

Vibrations	α -saturated (cm ⁻¹)	α-unsaturated
		(aromatic) (cm ⁻¹)
$\nu_a(NH_2) (A)^a$	3370(40) vs	3370(30) vs
$v_{s}(NH_{2})$ (B)	3205(45) vs	3180(30) vs
v(C=O) (I)	1680(35) vs	1660(15) vvs
$\delta(NH_2)$ (II)	1615(25) vs	1610(10) s
$\nu(CN)$ (III)	1380(80) m, s	1385(40) vs
$\rho(NH_2)$	1130(40)*	1115(25) w
$\tau(NH_2)$ (VII)	765(45) w	780(40) w, m
$\omega(NH_2)$ (V)	670(50) vs, b	660(50) w, m
δ (C=O) (IV)	600(50) w	605(35) w
γ (C=O) (VI)	550(50) w, m	550(40) w
δ(CCN)	430(50) m	475(55) m

* Overlaping with alkyl chain vibrations

^a Amide vibrations:

Amide A	$\nu_a(NH_2)$	Amide V	$\omega(NH_2)$
Amide B	$\nu_{s}(NH_{2})$	Amide VI	γ(C=O)
Amide I	v(C=O)	Amide VII	$\tau(\rm NH_2)$
Amide II	$\delta(NH_2)$		
Amide III	v(CN)		
Amide IV	δ(C=O)		

The infrared spectrum of propionamide (Nujol mull, KBr plates). Dots indicate the Nujol (mineral oil) absorption bands.

Secondary amides

Adsorption regions of -C(=O)NH-CH₃ group:

Vibrations	Region (cm ⁻¹)
v(NH) (A)	3315(45) vvs
Overtone	$\sim 3100 (2 \times 1550) \text{ m s}$
Amide (B)	~5100 (2X1550) III,S
v(C=O) (I)	1680(60) vvs
$\delta(NH) / \nu(CN) (II)$	1550(50) vs
$\nu(CN) / \delta(NH) (III)$	1270(55) m, s
v(N–C')	1015(95)
$\gamma(NH)$ (V)	735(60) s, vb
δ (C=O) (IV)	695(75)*
$\gamma(O=C-N)$ (VI)	450(100) m
δ(CNC')	315(60)

*overlapping with $\gamma(NH)$

The infrared spectrum of N-methylacetamide (neat liquid, KBr plates).

Tertiary amides

They cannot form hydrogen bonds, have C=O frequencies that are not influenced by associations.

v(C=O) 1655(30) cm⁻¹ as very strong band

Cyclic amides (lactams) give the expected increase in C=O frequency for decreasing ring size.

UREAS

Spectra of ureas show many similarities to spectra of previously described amides.

 $\begin{array}{c} -C=O\\ -NH_2 \end{array} \right\}$ bands are similar to those of amides (small shifts)

Approximate Wavenumbers (cm⁻¹) for Substituted Ureas

Group	$\nu_a(NH_2)$	v(NH)	$\nu_s(NH_2)$	v(C=O)	$\delta(\rm NH_2)$	δ(CNH)
R ₂ N–CO–NR ₂	_	—	—	1640	_	_
RNH-CO-NHR	_	3340	_	1625	_	1585, 1535 w
R_2N – CO – NH_2	3410	—	3200	1660	1610	—
RNH–CO–NH ₂	3430	3350	3220	1650	1600	1560

